Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

Open access

Abstract

Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] ANDERSON J. D. Ludwig Prandtl’s Boundary Layer. Physics Today 58 (2005) No. 12 42-48.

  • [2] ARAKERI J. H. P. N. SHANKAR. Ludwig Prandtl and Boundary Layers in Fluid Flow. Resonance 5 (2000) No. 12 48-63.

  • [3] CASSON N. A Flow Equation for Pigment Oil-Suspensions of the Printing Ink Type. Rheology of Disperse Systems 84 (1959) London Pergamon Press 1959.

  • [4] POP I. M. MUSTAFA T. HAYAT A. HENDI. Stagnation-Point Flow and Heat Transfer of a Casson Fluid towards a Stretching Sheet. Zeitschrift fur Naturforschung A 67 (2012) No. 1-2 70-76.

  • [5] ANIMASAN I. L. Effects of Thermophoresis Variable Viscosity and Thermal Conductivity on Free Convective Heat and Mass Transfer of Non-Darcian MHD Dissipative Casson Fluid Flow with Suction and n-th Order of Chemical Reaction. Journal of the Nigerian Mathematical Society 34 (2015) No. 1 11-31.

  • [6] RAJU C. S. K. N. SANDEEP V. SUGUNAMMA M. JAYACHANDRA BABU J. V. RAMANA REDDY. Heat and Mass Transfer in Magnetohydrodynamic Casson Fluid over an Exponentially Permeable Stretching Surface. Engineering Science and Technology an International Journal 19 (2016) No. 1 4552. doi: 10.1016/j.jestch.2015.05.010

  • [7] SANDEEP N. O. K. KORIKO I. L. ANIMASAN. Modified Kinematic Viscosity Model for 3D-Cassonfluidflow within Boundary Layer formed on a Surface at Absolute Zero. Journal of Molecular Liquids 221 (2016) 1197-1206. doi: 10.1016/j.molliq.2016.06.049

  • [8] BACHOK N. A. ISHAK I. POP. Melting Heat Transfer in Boundary Layer Stagnationpoint Flow Towards a Stretching/shrinking Sheet. Physics Letters A; 374 (2010) No. 40 4075-4079. doi: 10.1016/j.physleta.2010.08.032

  • [9] KỌRÍKỌ O. K. S. K. ADEGBIE I. L. ANIMASAN. Melting Heat Transfer Effects on Stagnation Point Flow of Micropolar Fluid with Variable Dynamic Viscosity and Thermal Conductivity at Constant Vortex Viscosity. Journal of the Nigerian Mathematical Society 35 (2015) No. 1 34-47. doi: 10.1016/j.jnnms.2015.06.004

  • [10] KỌRÍKỌ O. K. A. J. OMOWAYE I. L. ANIMASAUN M. E BAMISAYE. Melting Heat Transfer and Induced-Magnetic Field Effects on the Micropolar Fluid Flow towards Stagnation Point: Boundary Layer Analysis. International Journal of Engineering Research in Africa 29 (2017) 10-20. doi:10.4028/www.scientific.net/JERA.29.10

  • [11] DAKE J. M. K. D. R. F. HARLEMAN. Thermal Stratification in Lakes: Analytical and Laboratory Studies. Water Resources Research 1 (1969) No. 2 484-495.

  • [12] ADEGBIE K. S. A. J. OMOWAYE A. B. DISU I. L. ANIMASAN. Heat and Mass Transfer of Upper Convected Maxwell Fluid Flow with Variable Thermo-Physical Properties over a Horizontal Melting Surface. Applied Mathematics 6 (2015) 1362-1379.

  • [13] OMOWAYE A. J. I. L. ANIMASAN. Upper-Convected Maxwell Fluid Flow with Variable Thermo-Physical Properties over a Melting Surface situated in Hot Environment Subject to Thermal Stratification. Journal of Applied Fluid Mechanics 9 (2016) No. 4 1777-1790.

  • [14] WANG C. Y. The Three-dimensional Flow due to a Stretching Flat Surface. Physics Fluids 27 (1984) 1915-1917.

  • [15] NATH G. H. S. TAKHAR. Unsteady Three-dimensional Boundary-layer Flow due to a Stretching Surface. International Journal of Heat and Mass Transfer 29 (1986) No. 12 1996-1999.

  • [16] NADEEM S. U. H. RIZWAN N. S. AKBAR Z. H. KHAN. MHD Three Dimensional Casson Fluid Flow Past a Porous Linearly Stretching Sheet. Alexandria Engineering Journal 52 (2013) No. 4 577-582.

  • [17] STOKE G. G. On the Effect of Internal Friction of Fluids on the Motion of Pendulums. Trans. Cam. Phil. Soc. 9 8-106 (1851); Mathematics and Physics Papers Vol. 3 p. 1. Cambridge Cambridge University Press 3 (1901) No. 1. 1-86.

  • [18] WILLIAMS J. C. T. H. RHYNE. Boundary Layer Development on a Wedge Impulsively Set into Motion. SIAM Journal of Applied Mathematics 38 (1980) 215-224.

  • [19] SANDEEP N. V. SUGUNAMMA. Radiation and Inclined Magnetic Field Effects on Unsteady Hydromagnetic Free Convection Flow past an Impulsively Moving Vertical Plate in a Porous Medium. Journal of Applied Fluid Mechanics 7 (2014) No. 2 275-286.

  • [20] MOTSA S. S. I. L. ANIMASAUN. Paired Quasi-linearization Analysis of Heat Transfer in Unsteady Mixed Convection Nanofluid containing Both Nanoparticles and Gyrotactic Microorganisms due to Impulsive Motion. Journal of Heat Transfer 138 (2016) 114503. doi: 10.1115/1.4034039

  • [21] MOTSA S. S. I. L. ANIMASAUN. Unsteady Boundary Layer Flow over a Vertical Surface due to Impulsive and Buoyancy in the Presence of Thermal-Diffusion and Diffusion-Thermo using Bivariate Spectral Relaxation Method. Journal of Applied Fluid Mechanics 9 (2016) No. 5 2605-2619.

  • [22] HAYAT T. S. A. SHEHZADI A. ALSAEDI. Soret and Dufour Effects on Magnetohydrodynamic (MHD) Flow of Casson Fluid. Applied Mathematics Mechanics (English Ed.) 33 (2012) No. 10 1301-1312.

  • [23] MUKHOPADHYAY S. Casson Fluid Flow and Heat Transfer over a Nonlinearly Stretching Surface. Chinese Physics B 22 (2013) No. 7 074701.

  • [24] ADEBILE E. A. I. L. ANIMASAUN A. I. FAGBADE. Casson Fluid Flow with Variable Thermo-Physical Property along Exponentially Stretching Sheet with Suction and Exponentially Decaying Internal Heat Generation Using the Homotopy Analysis Method. Journal of the Nigerian Mathematical Society 35 (2016) No. 1 1-17. doi: 10.1016/j.jnnms.2015.02.001

  • [25] BATCHELOR G. K. An Introduction to Fluid Dynamics London Cambridge University Press 1987.

  • [26] CREPEAU J. C. R. CLARKSEAN. Similarity Solutions of Natural Convection with Internal Heat Generation. Transactions of ASME-Journal of Heat Transfer 119 (1997) 184-185.

  • [27] SALEM A. M. M. A. EL-AZIZ. MHD-mixed Convection and Mass Transfer from a Vertical Stretching Sheet with Diffusion of Chemically Reactive Species and Space- or Temperature-dependent Heat Source. Canadian Journal of Physics 85 (2007) No. 4 359-373.

  • [28] ANIMASAUN I. L. Double Diffusive Unsteady Convective Micropolar Flow past a Vertical Porous Plate moving through Binary Mixture using Modified Boussinesq Approximation. Ain Shams Engineering Journal 7 (2016) No. 2 755 -765. doi: 10.1016/j.asej.2015.06.010

  • [29] TAKHAR H. S. A. J. CHAMKHA. Unsteady Three-dimensional MHD Boundary-layer Flow due to the Impulsive Motion of a Stretching Surface. Acta Mechanica 146 (2001) No. 1-2 59-71.

  • [30] NA T. Y. Computational Methods in Engineering Boundary Value Problems New York Academic Press 1979.

Search
Journal information
Impact Factor

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.192
Source Normalized Impact per Paper (SNIP) 2018: 0.646

Mathematical Citation Quotient (MCQ) 2017: 0.01

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 118 3
PDF Downloads 133 100 4