The Generalized Two Dimensional Thermal-Electro-Elastic Solution for the Cracked-Half-Elliptical-Hole Problem in a Half Plane


The half elliptical hole with an edge crack in a thermopiezoelectric material is studied by using the complex variable method. First, the mapping function which maps the outside of the elliptical hole and the crack in the right half plane into the outside of a circular hole in a full plane is given by the method of conformal mapping. Then, the complex potential functions and the field intensity factors (FIF) are presented according to the boundary conditions, respectively. Some useful results can be found by numerical analysis: 1) The influence of the heat flux on FIF depends on the model of the crack; 2) The shape and the size of the hole possess a significant effect on the field distribution at the crack tip.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hetnarski, R. B., J. Ignaczak. The Mathematical Theory of Elasticity (Sec- ond edition), New York, Taylor & Francis, 2011.

  • [2] Noda, N., R. B. Hetnarski, Y. Tanigawa. Thermal Stresses (Second edition), New York, Taylor & Francis, 2003.

  • [3] Hetnarski, R. B., M. R. Eslami. Thermal Stresses - Advanced Theory and Applications, Springer, 2009.

  • [4] Tiersten, H. F. On the Nonlinear Equations of Thermo-electro-elasticity. Int. J. Eng. Sci., 9 (1971), 587-604.

  • [5] Chandrasekharaiah, D. S. A Generalized Linear Thermo-elasticity Theory for Piezoelectric Media. Acta. Mech., 71 (1988), 33-49.

  • [6] Gao, C. F., Y. T. Zhao, M. Z. Wang. An Exact and Explicit Treatment of an Elliptic Hole Problem in Thermo-piezo-electric Media. Int. J. Solids Struct., 39 (2002), 2665-2685.

  • [7] Hasebe, N., C. Bucher, R. Heuer. Heat Conduction and Thermal Stress induced by an Electric Current in an Infinite Thin Plate Containing an Elliptical Hole with an Edge Crack. Int. J. Solids Struct., 47 (2010), 138-147.

  • [8] Gao, C. F., M. Z. Wang. Collinear Permeable Cracks in Thermo-piezo-electric Materials. Mech. Mater., 33 (2001), 1-9.

  • [9] Wang, Y. J., C. F. Gao. The Mode III Cracks originating from the Edge of a Circular Hole in a Piezoelectric solid. Int. J. Solids Struct., 45 (2008), 4590-4599.

  • [10] Bowie, O. L. Analysis of an Infinite Plate containing Radial Cracks originating from the Boundary of an Internal Circular Hole. J. Math. Phys., 35 (1956), 60-71.

  • [11] Guo, J. H., Z. X. Lu, H. T. Han, Z. Y. Yang. Exact Solutions for Anti-plane Problem of Two Asymmetrical Edge Cracks emanating from an Elliptical Hole in a Piezoelectric Material. Int. J. Solids Struct., 46 (2009), 3799-3809.

  • [12] Guo, J. H., Z. X. Lu, H. T. Han, Z. Y. Yang. The Behaviour of Two Non- symmetrical Permeable Cracks emanating from an Elliptical Hole in a Piezoelec- tric Solid. Eur. J. Mech. A-Solid., 29 (2010), 654-663.

  • [13] Hasebe, N. Stress in Intensity Factors of Cracks initiating from a Rhombic Hole due to Uniform Heat Flux. Eng. Fract. Mech., 42 (1992), 331-337.

  • [14] Vinh, P. C., N. Hasebe, X. F. Wang. Interaction between a Cracked Hole and a Line Crack under Uniform Heat Flux. Int. J. Fracture, 131 (2005), 367-384.

  • [15] Wang, Y. J., C. F. Gao. Thermoelectroelastic Solution for Edge Cracks orig- inating from an Elliptical Hole in a Piezoelectric Solid. J. Therm. Stresses, 35 (2012), 138-156.

  • [16] Lu, J. K. Complex Variable Method in the Elastic Plane. Wuhan, Wuhan Uni- versity Press, 2005 (In Chinese).

  • [17] Gao, J., G. T. Liu. Stress Analysis of the Half Plane with a Half Elliptical Hole. Journal of Inner Mongolia Normal University, (Natural Science Edition), 40 (2011), 444-447 (In Chinese).

  • [18] Hasebe, N., S. Inohara. Stress Analysis of a Semi-infinite Plate with an Oblique Edge Crack. Arch. Appl. Mech., 49 (1980), 51-62.

  • [19] Chung, M. Y., T. C. T. Ting. Piezoelectric Solid with an Elliptic Inclusion or Hole. Int. J. Solids Struct., 33 (1996), 3343-3361.

  • [20] Shen, S., Z. B. Kuang. Interface Crack in Bi-piezothermoelastic Media and the Interaction with a Point Heat Source. Int. J. Solids Struct., 35 (1998), 3899-3915.

  • [21] Suo, Z. Singularities Interfaces and Cracks in Dissimilar Anisotropic Media. Proceedings of the Royal Society of London A, 427 (1990), 331-358.

  • [22] Muskhelishvili, N. I. Some Basic Problems of the Mathematical Theory of Elasticity, Groningen, Noordhoff, 1975.

  • [23] Ashida, F., J. S. Choi, N. Noda. Control of Elastic Displacement in Piezoelectric-based Intelligent Plate Subjected to Thermal Load. Int. J. Eng. Sci., 35 (1977), 851-868.


Journal + Issues