MODELLING OF ACOUSTIC EMISSION SOURCE AND WAVE RESPONSE IN LAYERED MATERIALS

Open access

Abstract

This study proposes a model of wave propagation in layered media for the use in acoustic emission (AE) studies. This model aims to find an AE response at a free surface to the propagating waves originating at a dislocation source either in one layer medium or a layer-to-layer interface. Each of the layered media is assumed to be homogenous, linear elastic and isotropic. An integral transformation method has been applied to determine the wave response in frequency-wave number domain, which is then converted to time-space domain. In the numerical examples, we first select truncated values with the finite integral transformation, so that no wave interference happens in the responses from wave reflection at truncated boundaries. Next, we simulate wave propagation in an elastic half space, and compare results obtained with that from other kind bottom boundary. Next, we introduce a dis- location source in interface and compare a simulated AE wave response obtained with that computed in the layered medium to demonstrate the performance of the model. In each simulation, the results show good agreement with the reference solutions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grosse C. U. M. Ohtsu. Acoustic Emission Testing - Basics for Research- Applications in Civil Engineering Germany Berlin & Heidelberg Springer Verlag 2008.

  • [2] Ono K. Structural Integrity Evaluation using Acoustic Emission. J. Acoustic Emission 25 (2007) 1-20.

  • [3] Aggelis D. G. Classification of Cracking Mode in Concrete by Acoustic Emis- sion Parameters. Mech. Res. Comm. 38 (2011) 7-153.

  • [4] De Oliveira R. A. T. Marques. Health Monitoring of FRP using Acoustic Emission and Artificial Neural Networks. Comput. Struct. 86 (2008) 73-367.

  • [5] Overgaard L. C. T. E. Lund P. P. Camanho. A Methodology for the Structural Analysis of Composite Wind Turbine Blades under Geometric and Material induced Instabilities. Comput. Struct. 88 (2010) 109-1092.

  • [6] Shiotani T. J. Bisschop J. G. M. Van Mier. Temporal and Spatial De- velopment of drying Shrinkage Cracking in Cement-based Materials. Eng. Fract. Mech 70 (2003) No. 12 1509-1525.

  • [7] Grosse C. H. Reinhardt T. Dahm. Localization and Classification of Frac- ture Types in Concrete with Quantitative Acoustic Emission Measurement Tech- niques. NDT Int. 30 (1997) No. 4 223-230.

  • [8] Aggelis D. G. T. Shiotani M. Terazawa. Assessment of Construction Joint Effect in Full-scale Concrete Beams by Acoustic Emission Activity. Eng. Mech. 136 (2010) No. 7 906-912.

  • [9] Ohtsu M. H. Watanabe. Quantitative Damage Estimation of Concrete by Acoustic Emission. Constr. Build Mater. 15 (2001) 217-224.

  • [10] Colombo S. I. G. Main M. C. Forde. Assessing Damage of Reinforced Concrete Beam using “b-value” Analysis of Acoustic Emission Signals. J. Mater. Civil. Eng. 15 (2003) 280-286.

  • [11] Suzuki T. M. Ohtsu. Quantitative Damage Evaluation of Structural Concrete by a Compression Test based on AE Rate Process Analysis. Constr. Build Mater. 18 (2004) 197-202.

  • [12] Philippidis T. V. Nikolaidis A. Anastassopoulos. Damage Character- ization of Carbon/carbon Laminates using Neural Network Techniques on AE Signals. NDT&E Int. 31 (1998) 329-340.

  • [13] Godin N. S. Huguet R. Gaertner. Influence of Hydrolytic Ageing on the Acoustic Emission Signatures of Damage Mechanisms occurring during Tensile Tests on Unidirectional Glass/polyester Composites: Application of a Kohonen’s Map. Compos. Struct. 72 (2006) 79-85.

  • [14] Elaqra H. N. Godin G. Peix M. R’Mili G. Fantozzi. Damage Evolution Analysis in Mortar during Compressive Loading using Acoustic Emission and X- ray Tomography: Effects of the Sand/cement Ratio. Cem. Concr. Res. 37 (2007) 703-713.

  • [15] Ohno K. M. Ohtsu. Crack Classification in Concrete based on Acoustic Emis- sion. Constr. Build Mater. 24 (2010) 2339-4236.

  • [16] Momon S. N. Godin P. Reynaud M. R’Mili G. Fantozzi. Unsupervised and Supervised Classification of AE Data collected during Fatigue Test on CMC at High Temperature. Compos. Part A-Appl. S. 43 (2012) 254-260.

  • [17] Mindess S. Acoustic Emission Methods. In: Malhotra VM Carino NJ Editors. CRC Handbook of Nondestructive Testing of Concrete Boca Raton (FL): CRC 2004.

  • [18] Hamstad M. A. A Review: Acoustic Emission a Tool for Composite-Materials Studies. Experimental Mechanics 26 (1986) 7-13.

  • [19] Yoshinori W. I. Ken-Ichi S. Kazuhiko F. Yoshiaki B. Rao G. Hua L. Xun. A Modelling Method on Fractal Distribution of Cracks in Rocks Using AE Monitoring. J. Acoustic Emission 23 (2005) 119-128

  • [20] Barsoum F. F. J. Suleman A. Korcak E. V. K. Hill. Acoustic Emis- sion Monitoring and Fatigue Life Prediction in Axially Loaded Notched Steel Specimens. J. Acoustic Emission 27 (2009) 40-63.

  • [21] Kalicka M. Acoustic Emission as a Monitoring Method in Prestressed Concrete Bridges Health Condition Evaluation. J. Acoustic Emission 27 (2009) 18-26.

  • [22] Spasova L. M. M. I. Ojovan C. R. Scales. Acoustic Emission Technique applied for Monitoring and Inspection of Cementitious Structures encapsulating Aluminium. J. Acoustic Emission 25 (2007) 51-68.

  • [23] Ohuchi T. A. Hermawan et al. Basic Studies on Fracture Toughness of Sugi and Acoustic Emission. Journal of the Faculty of Agriculture Kyushu University 56 (2011) No. 1 99.

  • [24] Jing Fang Hui-yong Wu Zhejun Liu et al. Application of Acoustic Emission Technigues on Flight Stabilizer Spindle Fatigue Tests. Aircraft Design 29 (2009) No. 4 32.

  • [25] Yong Wang Huizheng J-CunXu. The Technique of Acoustic Emission In- spection of Cylinders of Tube Trailer. Non-destructive Testing 32 (2010) No 5 357.

  • [26] Kai Lu Chen. Acoustic Emission Detection Technology and Its Application Perspective in Electric Power Industry. FuJian Power and Electrical Engineering 21 (2001) No 3 58.

  • [27] Freund L. B. Dynamic Fracture Mechanics. Cambridge University Press 1998.

  • [28] Grosse C. U. H. W. Reinhardt F. Finck. Signal-based Acoustic Emission Techniques in Civil Engineering. J. Mater. Civ. Eng. 15 (2003) No. 3 274-279.

  • [29] Burridge R. L. Knopoff. Body Force Equivalents for Seismic Dislocations. Bull. Seismol. Soc. Am. 54 (1964) 1875-1888.

  • [30] Backus G. E. M. Mulcahy. Moment Tensors and Other Phenomenological Descriptions of Seismic Sources. - I. Continuous Displacements. Geophys. J. Roy. Astron. Soc. 46 (1976) 341-361.

  • [31] Backus G. E. M. Mulcahy. Moment Tensors and Other Phenomenological Descriptions of Seismic Sources - II. Discontinuous Displacements. Geophys. J. Roy. Astron. Soc. 47 (1976) 301-329.

  • [32] Kennett B. L. N. Seismic Wave Propagation in Stratified Elastic Media Cam- bridge University Press 1983.

  • [33] Hamstad M. A. A. O. Gallagher J. Gary. Effects of Lateral Plate Dimen- sions on Acoustic Emission Signals from Dipole Sources. J. Acoustic Emission 19 (2001) 258-274.

  • [34] Zhang R. A. Alamin. Synthesis of Acoustic-Emission Wave Propagation in Multi-Layer Media. Applied Mechanics and Materials 321-324 (2013) 1321-1330.

Search
Journal information
Impact Factor

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.192
Source Normalized Impact per Paper (SNIP) 2018: 0.646

Mathematical Citation Quotient (MCQ) 2017: 0.01

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 121 3
PDF Downloads 232 43 0