Numerical Analysis of Large Telescopes in Terms of Induced Loads and Resulting Geometrical Stability

Open access


Comprehensive numerical studies, involving structural and Computational Fluid Dynamics (CFD) analysis, have been carried out at the Engineering Research Institute “Ventspils International Radio Astron- omy Center” (VIRAC) of the Ventspils University College to investigate the gravitational and wind load effects on large, ground-based radio tele- scopes RT-32 performance. Gravitational distortions appear to be the main limiting factor for the reflector performance in everyday operation. Random loads caused by wind gusts (unavoidable at zenith) contribute to the fatigue accumulation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Woody D. et al. Measurement Modelling and Adjustment of the 10.4 m Diameter Leighton Telescopes In: Proc. of SPIE 3357 1998 474-485.

  • [2] Repetto M. P. G. Solari. Wind-induced Fatigue of Structures under Neu- tral and Non-neutral Atmospheric Conditions. J. Wind Eng. and Ind. Aerodyn. 95 (2007) 1364-1383.

  • [3] Balanis C. A. Antenna Theory. Analysis and Design New Jersey JohnWiley & Sons 2005.

  • [4] Borovkov A.I. et al. Finite-Element Modeling and Thermal Analysis of the RT-70 Radio Telescope Main Reflector In: Proc. of IVth Int. Conf. Antenna Theory and Techniques 2004 651-654.

  • [5] Vogiatzis K. et al. Estimating the Effect of Wind Loading on Extremely Large Telescope Performance Using Computational Fluid Dynamics In: Proc. of SPIE 5497 2004 311-320.

  • [6] Upnere S. et al. Development of Mechanical Models of RT-16 and RT-32 Radio Telescopes. Space Research Review 1 (2012) 112-125.

  • [7] Upnere S. et al. Characterization of Wind Loading of the Large Radio Telescope. Boundary Field Problems and Computer Simulation 54 (2012) 30-37.

  • [8] Joffe R. et al. Evaluation of Damage and Deformation of the RT-32 Radio Telescope. Latvian J. of Physics and Tech. Sci. 49 (2012) 4-12.

  • [9] Zienkiewicz O. C. et al. The Finite Element Method for Fluid Dynamics Amsterdam Elsevier BH 2009.

  • [10] Launder B. E. D. B. Spalding. The Numerical Computation of Turbulent Flows. Comput. Method Appl. Mech. Eng. 3 (1974) 269-289.

  • [11] Upnere S. et al. Analysis of Wind Influence to Radio Astronomy Observations at Irbene Radio Telescope Complex. Scientific Journal of RTU 6 (2011) 118-126.

  • [12] Upnere S. et al. Analysis of Structural Integrity of Large Radio Telescopes Subjected to Gravitational and Wind Loads In: Proc. of EIRI 25 2012 148-154.

  • [13] ˇSipkovs P. et al. Measurements of the Wind Energy Resource in the Latvia In: CD Proc. of World Renewable Energy Congress 2011 Sweden 2011 1-8.

  • [14] Zienkiewicz O. C. R. L. Taylor. The Finite Element Method for Solid and Structural Mechanics Amsterdam Elsevier BH 2006.

  • [15] Ruze J. Antenna Tolerance Theory a Review In: Proc. of IEEE 54 1966 633-640.

  • [16] Beden S. M. et al. Fatigue Life Assessment of Different Steel-Based Shell Materials under Variable Amplitude Loading. Eur. J. Sci. Res. 29 (2009) 157-169.

Journal information
Impact Factor

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.192
Source Normalized Impact per Paper (SNIP) 2018: 0.646

Mathematical Citation Quotient (MCQ) 2017: 0.01

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 56 2
PDF Downloads 66 41 0