Application of organic waste material overgrown with Trichoderma atroviride as a control strategy for Sclerotinia sclerotiorum and Chalara thielavioides in soil

Open access

Abstract

The effect of granulated organic waste material overgrown with Trichoderma atroviride TRS25 on the survival of Sclerotinia sclerotiorum and Chalara thielavioides in the soil was investigated. Application of this material into the soil at a dosage of 1% (w/v) reduced the survival of S. sclerotiorum sclerotia to almost zero after 2 months of incubation. The sclerotia were parasitized by T. atroviride fungus multiplied on granulates. The detrimental effect of granulates on Ch. thielavioides was observed after 4 months of incubation. The granulates, with Trichoderma and without the fungus, caused a decrease of the pathogen population in soil. Trichoderma atroviride introduced into the soil as a conidia suspension did not decrease the amount of Ch. thielavioides but the fungus parasitized S. sclerotiorum sclerotia. After the addition of granulated waste material, an increase of bacteria, especially the Pseudomonas group in the soil was observed.

Agrios G.N. 2005. Plant Pathology. 5th ed. Elsevier Academic Press, Burlington, USA, 922 pp.

Aleandri M.P., Chilosi G., Bruni N., Tomassini A., Vettraino A.M., Vannini A. 2015. Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Protection 67: 269–278. DOI: https://doi.org/10.1016/j.oropro.2014.10.023

Bonanomi G., Antignani V., Capodilupo M., Scala F. 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry 42 (2): 136–144. DOI: https://doi.org/10.1016/j.soilbio.2009.10.012

Bonanomi G., Gaglione S.A., Incerti G., Zoina A. 2013. Biochemical quality of organic amendments affects soil fungistasis. Applied Soil Ecology 72: 135–142. DOI: https://doi.org/10.1016/j.apsoil.2013.06.007

Dhingra O.D., Sinclair J.B. 1995. Basic Plant Pathology Methods. 2nd ed. Lewis Publishers, Boca Raton, London-Tokyo, 434 pp.

Djilas S., Canadanović-Brunet J., Cetković G. 2009. By-products of fruits processing as a source of phytochemicals. Chemical Industry & Chemical Engineering Quarterly 15 (4): 191–202. DOI: https://doi.org/10.2298/CICEQ0904191D

Druzhinina I.S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C.M., Monte C.M., Mukherjee P.K., Zeilinger S., Grigoriev I.V., Kubicek C.P. 2011. Trichoderma: the genomics of opportunistic success. Natural Review of Microbiology 9 (12): 749–759. DOI: https://doi.org/10.1038/nrmicro2637

Eshel D., Regev R., Orenstein J., Droby S., Gan-Mor S. 2009. Combining physical, chemical and biological methods for synergistic control of postharvest diseases: A case study of Black Root Rot of carrot. Postharvest Biology and Technology 54 (1): 48–52. DOI: https://doi.org/10.1016/j.postharvbio.2009.04.011

Gamliel A., Austerweil M., Kritzman G. 2000. Non-chemical approach to soilborne pest management – organic amendments. Crop Protection 19 (8–10): 847–853. DOI: https://doi.org/10.1016/s0261-2194(00)00112-5

Geraldine A.M., Lopes F.A.C., Carvalho D.D.C., Barbosa E.T., Rodrigues A.R., Brandao R., Ulhoa C.J., Junior M.L. 2013. Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biological Control 67 (3): 308–316. DOI: https://doi.org/101016/j.biocontrol.2013.09.013

Gilardi G., Pugliese M., Gullino M.L., Garibaldi A. 2016. Effect of different organic amendments on lettuce fusarium wilt and on selected soilborne microorganisms. Plant Pathology 65 (5): 704–712. DOI: https://doi.org/10.1111/ppa.12460

Gould W.D., Hagedorn C., Bardinelli T.R., Zablotowicz R.M. 1985. New selective media for enumeration and recovery of fluorescent Pseudomonads from various habitats. Applied and Environmental Microbiology 49 (1): 28–32.

Hamza A., Mohamed A., Derbalah A. 2016. Unconventional alternatives for control of tomato root rot caused by Rhizoctonia solani under greenhouse conditions. Journal of Plant Protection Research 56 (3): 298–305. DOI: https://doi.org/10.1515/jppr-2016-0046

Hermosa R., Viterbo A., Chet I., Monte E. 2012. Plant beneficial effects of Trichoderma and of its genes. Microbiology 158 (1): 1–25. DOI: https://doi.org/10.1099/mic.0.052274-0

Huang H., Erickson R.S., Chang Ch., Moyer J.R., Larney F.J., Huang J. 2005. Control of white mold of bean caused by Sclerotinia sclerotiorum using organic soil amendments and biological agents. Plant Pathology Bulletin 14: 183–190.

Johnson D.A., Atallah Z.K. 2014. Disease cycle, development and management of Sclerotinia stem rot of potato. American Journal of Plant Sciences 5 (25): 3717–3726. DOI: https://doi.org/10.4236/ajps.2014.525388

Kancelista A., Trill U., Stempniewicz R., Piegza M., Szczech M., Witkowska D. 2013. Application of lignocellulosic waste materials for the production and stabilization of Trichoderma biomass. Polish Journal of Environmental Studies 22 (4): 1083–1090.

Khaledi N., Taheri P. 2016. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. Journal of Plant Protection Research 56 (1): 21–31. DOI: https://doi.org/10.1515/jppr-2016-0004

Knudsen G.R., Eschen D.J. Dandurand L.M., Bin L. 1991. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Disease 75 (5): 466–470. DOI: https://doi.org/10.1094/pd-75-0466

Kora C., McDonald M.R., Boland G.J. 2005. Epidemiology of sclerotinia rot of carrot caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 27 (2): 245–258. DOI: https://doi.org/10.1080/07060660509507222

Kowalska B., Smolińska U. 2003. Comparison of media used to isolate Chalara elegans and Ch. thielavioides from soil. Bulletin of the Polish Academy of Science 51 (2): 103–111.

Köhl J., Postma J., Nicot P., Ruocco M., Blum B. 2011. Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control 57 (1): 1–12. DOI: https://doi.org/10.1016/j.biocontrol.2010.12.004

Mahdizadehnaraghi R., Heydari A., Zamanizadeh H.R., Rezaee S., Nikan J. 2015. Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. Journal of Plant Protection Research 55 (2): 136–141. DOI: https://doi.org/10.1515/jppr-2015-0017

Martin J.P. 1950. Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Science 69 (3): 215–232. DOI: https://doi.org/10.1097/00010694-195003000-00006

Matroudi S., Zamani M.R., Motallebi M. 2009. Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem rot. Egyptian Journal of Biology 11: 37–44.

McQuilken M.P., Mitchell S.J., Budge S.P., Whipps J.M., Fenlon J.S., Archer S.A. 1995. Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathology 44 (5): 883–896. DOI: https://doi.org/10.1111/j.1365-3059.1995.tb02748.x

McQuilken M.P., Chalton D. 2009. Potential of biocontrol of sclerotinia rot of carrot with foliar sprayers of Contans WG (Coniothyrium minitans). Biocontrol Science and Technology 19 (2): 229–235. DOI: https://dx.doi.org/10.1080/09583150802635549

Monfil V.O., Casas-Flores S. 2014. Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture. p. 429–453. In: “Biotechnology and Biology of Trichoderma” (V.K. Gupta, M. Schmoll, A. Herrera-Estrella, R.S. Upadhyay, I. Druzhinina, M.G. Tuohy, eds.). Elsevier. USA, 549 pp. DOI: https://doi.org/10.1016/b978-0-444-59576-8.00032-1

Oskiera M., Szczech M., Bartoszewski G. 2015. Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. Journal of Horticultural Research 23 (1): 75–86. DOI: https://doi.org/10.2478/johr-2015-0010

Paulin-Mahady A.E., Harrington T.C., McNew D. 2002. Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 94 (1): 62–72. DOI: 10.2307/3761846

Saraf M., Pandya U., Thakkar A. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research 169 (1): 18–29. DOI: 10.1016/j/micres.2013.08.009

Scotti R., Bonanomi G., Scelza R., Zoina A., Rao M.A. 2015. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. Journal of Soil Science and Plant Nutrition 15 (2): 333–352. DOI: https://doi.org/10.4067/s0718-95162015005000031

Shafique H.A., Sultana V., Ehteshamul-Haque, Athar M. 2016. Management of soil-borne diseases of organic vegetables. Journal of Plant Protection Research 56 (3): 221–230. DOI: https://doi.org/10.1515/PPR-2016-0043

Smolińska U., Gołębiewska E., Kowalska B., Kowalczyk W., Szczech M. 2014a. Materiały odpadowe jako nośniki antagonistycznych grzybów Trichoderma [Waste materials as growing media for antagonistic Trichoderma fungi]. Inżynieria i Ochrona Środowiska 17 (1): 5–20 (in Polish)

Smolińska U., Kowalska B., Kowalczyk W., Szczech M. 2014b. The use of agro-industrial waste as carriers of Trichoderma fungi in the parsley cultivation. Scientia Horticulturae 179: 1–8. DOI: https://doi.org/10.1016/j.scienta.2014.08.023

Smolińska U., Kowalska B., Kowalczyk W., Szczech M., Murgrabia A. 2016. Eradication of Sclerotinia sclerotiorum sclerotia from soil using organic waste materials as Trichoderma fungi carriers. Journal of Horticultural Research 24 (1): 101–110. DOI: https://doi.org/10.1515/johr-2016-0012

Weber R.W.S., Tribe H.T. 2004. Moulds that should be better known: Thielaviopsis basicola and T. thielavioides, two ubiquitous moulds on carrots sold in shops. Mycologist 18 (1): 6–10. DOI: https://doi.org/10.1017/S0269915X04001028

Zeng W., Wang D., Kirk W., Hao J. 2012. Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biological Control 60 (2): 225–232. DOI: https://doi.org/10.1016/j.biocontrol.2011.10.009

Journal of Plant Protection Research

The Journal of Polish Society of Plant Protection, Committee of Plant Protection; Polish Academy of Sciences, Institute of Plant Protection – National Research Institute

Journal Information


CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.332
Source Normalized Impact per Paper (SNIP) 2016: 0.829

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 260 26
PDF Downloads 195 188 13