Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy

Open access

Abstract

The present exploration is focused on the bio-fabrication of silver nanoparticles (Ag NPs) using Trichodesma indicum aqueous leaf extract as a reducing agent. The synthesized Ag NPs were productively characterized by UV-vis spectroscopy, XRD, and TEM studies. The photosynthesis of Ag NPs was done at room temperature for 24 h and at 60°C. The green synthesis of spherical-shaped Ag NPs bio-fabricated from T. indicum with a face centred cubic structure showed average particle sizes of 20–50 nm, which is inconsistent with the particle size calculated by the XRD Scherer equation and TEM analysis. We further explored the larvicidal efficacy of biosynthesized Ag NPs with leaf extracts of T. indicum against Mythimna separata. The results showed that Ag NPs (20–50 nm) of T. indicum possess good larvicidal activity against M. separata with an LC50 of 500 ppm. Thus, we can advocate that Ag NPs of 20–50 nm size extracted from T. indicum may be considered in the pest management programme of M. separata in future.

Abdallah I.S., Abou-Yousef H.M., Fouad E.A., Kandil M.A. 2016. The role of detoxifying enzymes in the resistance of the cowpea aphid (Aphis craccivora Koch) to hiamethoxam. Journal of Plant Protection Research 56 (1): 67–72. DOI: https://doi.org/10.1515/jppr-2016-0010

Alghuthaymi M.A., Almoammar H., Rai M., Said Galiev E., Abd-Elsalam K.A. 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology and Biotechnological Equipment 29 (2): 221–236. DOI: https://doi.org/10.1080/13102818.2015.1008194

Asharani P.V., Wu Y.L., Gong Z.Y., Valiyaveettil S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19: 1–8. DOI: 10.1088/0957-4484/19/25/255102

Bhattacharyya A., Bhaumik A., Usha R.P., Mamdal S., Epidi T.T. 2010. Nanoparticles – A recent approach to insect pest control. African Journal of Biotechnology 9 (24): 3489–3493. Available online at: http://www.academicjournals.org/AJB

Bhattacharyya A., Prasad R., Buhroo A.A., Duraisamy P., Yousuf I., Umadevi M., Bindhu M.R., Govindarajan M., Khanday A.L. 2016. One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: An eco-friendly and potent control tool against rose aphid, Macrosiphum rosae. Journal of Nanoscience 2016, 7 pp. DOI: https://doi.org/10.1155/2016/4679410

Biju V. 2007. Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells. Langmuir 23 (20): 10254–10261. DOI: https://doi.org/10.1021/la7012705

Chakravarthy A.K., Bhattacharyya A., Shashank P.R., Timothy T., Epidi Doddabasappa B., Mandal S.K. 2012. DNA-tagged nano gold: A new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). African Journal of Biotechnology 11 (38): 9295–9301. DOI: https://doi.org/10.5897/ajb11.883

Chen H., Yada R. 2011. Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science and Technology 22 (11): 585–594. DOI: https://doi.org/10.1016/j.tifs.2011.09.004

Chen X., Schluesener H.J. 2008. Nanosilver: a nanoproduct in medical application. Toxicology Letters 176 (1): 1–12. DOI: https://doi.org/10.1016/j.toxlet.2007.10.004

Chowdappa P., Gowda S. 2013. Nanotechnology in crop protection: Status and scope. Pest Management in Horticultural Ecosystems 19 (2): 131–151.

Ensaf S.I.M., Inaam A.E., Mana H.E. 2016. Outbreak of oriental yellow scale insect, Aonidiella orientalis (Newstead) (Homoptera: Diaspididae), on neem in Sudan. Bulletin OEPP/EPPO Bulletin 46 (1): 125–128. DOI: https://doi.org/10.1111/epp.12264

Griffitt R.J., Luo J., Gao J., Bonzongo J.C., Barber D.S. 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry 27 (9): 1972–1978. DOI: https://doi.org/10.1897/08-002.1

Hallberg K. 2010. Towards a responsible research in nanoscience and nanotechnology. Pasi Nano-Bio 1–47.

Harper S. 2010. New approaches needed to gauge safety of nanotech based pesticides, researchers urge. Physics and Chemistry 4 (33): 2010–2012.

Hsing I-M., Xu Y., Wenting Z.W. 2007. Micro and nanomagnetic particles for applications in biosensing. Electroanalysis 19 (7–8): 755–768. DOI: https://doi.org/10.1002/elan.200603785

Ishiwaka R., Masuda Y. 2008. Possible biological control of the armyworm by the harvest mouse. Grassland Science 54 (1): 52–56. DOI: https://doi.org/10.1111/j.1744-697x.2008.00105.x

Jampilek J., Kralova K. 2016. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecological Chemistry and Engineering S. 22 (3): 321–361. DOI: https://doi.org/10.1515/eces–2015–0018

Jo Y-K., Kim B.H., Jung G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease 93 (10): 1037–1043. DOI: https://doi.org/10.1094/pdis-93-10-1037

Johnston C.T. 2010. Probing the nanoscale architecture of clay minerals. Clay Minerals 45 (3): 245–279. DOI: https://doi.org/10.1180/claymin.2010.045.3.245

Johnston H.J., Hutchison G., Christensen F.M., Peters S., Hankin S. 2010. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology 40 (4): 328–46. DOI: https://doi.org/10.3109/10408440903453074

Kim H.S., Kang H.S., Chu G.J., Byun H.S. 2008. Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenomena 135: 15–18. DOI: https://doi.org/10.4028/3-908451-48-5.15

Lamsal K., Kim S.W., Jung J.H., Kim Y.S., Kim K.S., Lee Y.S. 2011. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39 (1): 26–32. DOI: https://doi.org/10.4489/myco.2011.39.1.026

Levy R., Zhenxin W.Z., Duchesne L., Doty R.C., Cooper A.I., Brust M., David G., Fernig D.G. 2006. A generic approach to mono functionalized protein like gold nanoparticles based on immobilized metal ion affinity chromatography. Chem-BioChem 7 (4): 592–594. DOI: https://doi.org/10.1002/cbic.200500457

Li F.B., Wang W., Zhang H.X., Shen W.F., Xu X.Y., Chen J.E., Meng Z.Q. 2015. Complete mitochondrial genome of the oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae). Mitochondrial DNA 26 (6): 881–882. DOI: http://dx.doi.org/10.3109/19401736.2013.861441

Megeed M.S., Galal OLA A., Abdel–Razek M.M. 2015. Phylogenetic relationship of an invasive drosophilid, Zaprionus indianus and closely related species of drosophilidae (diptera) based on esterase patterns. Egyptian Journal of Genetics and Cytology 44 (2): 281–290.

Park E. J., Yi J., Kim Y., Choi K., Park K. 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology In Vitro 24 (3): 872–878. DOI: https://doi.org/10.1016/j.tiv.2009.12.001

Prabha D., Nimisha S., Velmurugan P., Sivakumar S. 2015. Phytosynthesis of silver nanoparticles using leaf extract of Trichodesma indicum and its application in removal of dyes from aqueous solutions. Science and Engineering Research Board, New Delhi, Sponsored by National Conference on Applications of Nanotechnology in Environmental Remedation. 11–16.

Prasad R. 2014. Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles 2014, 8 pp. DOI: https://doi.org/10.1155/2014/963961

Prasad R., Kumar V., Prasad K.S. 2014. Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology 13 (6): 705–713. DOI: https://doi.org/10.5897/ajbx2013.13554

Prasad R., Pandey R., Barman I. 2016. Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomedicine and Nanobiotechnology 8 (2): 316–330. DOI: 10.1002/wnan.1363.

Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K. 2012. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology 112 (5): 841–852. DOI: https://doi.org/10.1111/j.1365-2672.2012.05253.x

Rashid M., Khan R.A., Zhang Y. 2013. Physiological and population responses of armyworm Mythimna separata (Lepidoptera: Noctuidae) to a sub lethal dose of Cantharidin-AC. Journal of Economic Entomology 106 (5): 2177–2182. DOI: https://doi.org/10.1603/ec13089

Regnault-Roger C., Philogene B., Vincent C. 2005. Biopesticides of Plant Origin. Lavoisier, France, 313 pp.

Sharma H.C., Davies J.C. 1982. The oriental armyworm, Mythimna separata: distribution, biology and control: a literature review. Miscellaneous Report No. 59. Research Report. Overseas Development Administration, Wrights Lane, London, United Kingdom.

Sharon M., Choudhary A. Kr., Kumar R. 2010. Nanotechnology in agricultural diseases and food safety. Journal of Phytology 2 (4): 83–92. Available online: www.journal-phytology.com

Simonian A.L., Good T.A., Wang S.S., Wild J.R. 2005. Nanoparticle-based optical biosensors for the direct detection organophosphate chemical warfare agents and pesticides. Analytica Chimica Acta 534 (1): 69–77. DOI: https://doi.org/10.1016/j.aca.2004.06.056

Wang L., Hui C., Sandhu H.S., Li Z., Zhao Z. 2015. Population dynamics and associated factors of cereal aphids and armyworms under global change. Scientific Reports 5 (1). DOI: https://doi.org/10.1038/srep18801

Wei D., Sun W., QianYe W.Y., Ma X. 2009. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydrate Research 344 (17): 2375–2382. DOI: https://doi.org/10.1016/j.carres.2009.09.001

Zhu F., Lavine L., O’Neal S., Lavine M., Foss C., Walsh D. 2016. Insecticide resistance and management strategies in urban ecosystems. Insects 7 (1): 2. DOI: https://doi.org/10.3390/insects7010002

Journal of Plant Protection Research

The Journal of Polish Society of Plant Protection, Committee of Plant Protection; Polish Academy of Sciences, Institute of Plant Protection – National Research Institute

Journal Information


CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.332
Source Normalized Impact per Paper (SNIP) 2016: 0.829

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 333 40
PDF Downloads 145 145 17