Accounting for Complex Sampling in Survey Estimation: A Review of Current Software Tools

Open access

Abstract

In this article, we review current state-of-the art software enabling statisticians to apply design-based, model-based, and so-called “hybrid” approaches to the analysis of complex sample survey data. We present brief overviews of the similarities and differences between these alternative approaches, and then focus on software tools that are presently available for implementing each approach. We conclude with a summary of directions for future software development in this area.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agresti A. and B. A. Coull. 1998. “Approximate Is Better than ‘Exact’ for Interval Estimation of Binomial Proportions.” American Statistician 52: 119–126. Doi: https://doi.org/10.1080/00031305.1998.10480550.

  • Archer K.J. S. Lemeshow and D.W. Hosmer. 2007. “Goodness-of-fit Tests for Logistic Regression Models When Data are Collected using a Complex Sampling Design.” Computational Statistics and Data Analysis 51: 4450–4464. Doi: https://doi.org/10.1016/j.csda.2006.07.006.

  • Asparouhov T. 2006. “General Multi-level Modeling with Sampling Weights.” Communications in Statistics––Theory and Methods 35: 439–460. Doi: https://doi.org/10.1080/03610920500476598.

  • Asparouhov T. and B. Muthén. 2007. “Testing for Informative Weights and Weights Trimming in Multivariate Modelling with Survey Data.” In Proceedings of the Survey Research Methods Section of the American Statistical Association 2007 Salt Lake City Utah 3394–3399. Available at: https://www.statmodel.com/download/JSM2007000745.pdf (accessed April 14 2017).

  • Asparouhov T. and B. Muthén. 2010. “Resampling Methods in Mplus for Complex Survey Data.” Mplus Technical Report May 4 2010. Available at: https://www.stat-model.com/download/Resampling_Methods5.pdf (Accessed October 10 2016).

  • Baker R. J.M. Brick N.A. Bates M. Battaglia M.P. Couper J.A. Dever and R. Tourangeau. 2013. “Summary Report of the AAPOR Task Force on Non-probability Sampling.” Journal of Survey Statistics and Methodology 1: 90–143. Doi: https://doi.org/10.1093/jssam/smt008.

  • Barnighausen T. J. Bor S. Wandira-Kazibwe and D. Canning. 2011. “Correcting HIV Prevalence Estimates for Survey Nonparticipation using Heckman-type Selection Models.” Epidemiology 22: 27–35. Doi: 10.1097/EDE.0b013e3181ffa201.

  • Bean J.A. 1975. “Distribution and Properties of Variance Estimators for Complex Multistage Probability Samples: An Empirical Distribution.” In Vital and Health Statistics: Series 2 Data Evaluation and Methods Research 65: i–iv.

  • Beaumont J.F. 2005. “On the Use of Data Collection Process Information for the Treatment of Unit Nonresponse Through Weight Adjustment.” Survey Methodology 31: 227–231.

  • Beaumont J.F. 2008. “A New Approach to Weighting and Inference in Sample Surveys.” Biometrika 95: 539–553. Doi: https://doi.org/10.1093/biomet/asn028.

  • Bethlehem J.G. 2002. “Weighting Nonresponse Adjustments Based on Auxiliary Information.” In Survey Nonresponse edited by R.M. Groves D.A. Dillman J.L. Eltinge and R.J.A. Little 275–288. New York: Wiley.

  • Binder D.A. 1981. “On the Variances of Asymptotically Normal Estimators for Complex Surveys.” Survey Methodology 7: 157–170.

  • Binder D.A. 1983. “On the Variances of Asymptotically Normal Estimators from Complex Surveys.” International Statistical Review 51: 279–292. Doi: 10.2307/1402588.

  • Binder D.A. and G.R. Roberts. 2003. “Design-based and Model-based Methods for Estimating Model Parameters.” In Analysis of Survey Data edited by R.L. Chambers and C.J. Skinner 29–48. Chichester West Sussex: Wiley.

  • Bollen K.A. P.P. Biemer A.F. Karr S. Tueller and M.E. Berzofsky. 2016. “Are Survey Weights Needed? A Review of Diagnostic Tests in Regression Analysis.” Annual Review of Statistics and Its Application 3: 375–392. Doi: https://doi.org/10.1146/annurev-statistics-011516-012958.

  • Breckling J.U. R.L. Chambers A.H. Dorfman S.M. Tam and A.H. Welsh. 1994. “Maximum Likelihood Inference from Sample Survey Data.” International Statistical Review 62: 349–363. Doi: 10.2307/1403766.

  • Brick J.M. 2013. “Unit Nonresponse and Weighting Adjustments: A Critical Review.” Journal of Official Statistics 29: 329–353. Doi: https://doi.org/10.2478/jos-2013-0026.

  • Campbell C. and M. Meyer. 1978. “Some Properties of T Confidence Intervals for Survey Data.” In Proceedings of the American Statistical Association Survey Research Methods Section 437–442. Available at: https://ww2.amstat.org/sections/srms/Proceedings/papers/1978_089.pdf (accessed April 14 2017).

  • Canty A.J. and A.C. Davison. 1999. “Resampling-based Variance Estimation for Labour Force Surveys.” The Statistician 48: 379–391. Doi: 10.1111/1467-9884.00196.

  • Carle A.C. 2009. “Fitting Multilevel Models in Complex Survey Data with Design Weights: Recommendations.” BMC Medical Research Methodology 9(49). Doi: https://doi.org/10.1186/1471-2288-9-49.

  • Cassel C. C.-E. Särndal and J. Wretman. 1983. “Some Uses of Statistical Models in Connection with the Nonresponse Problem.” In Incomplete Data in Sample Surveys edited by W.G. Madow and I. Olkin 143–160. New York: Academic Press.

  • Chambers R.L. A.H. Dorfman and S. Wang. 1998. “Limited Information Likelihood Analysis of Survey Data.” Journal of the Royal Statistical Society (Series B) 60: 397–411. Doi: 10.1111/1467-9868.00132.

  • Chambers R.L. and C.J. Skinner (Editors). 2003. Analysis of Survey Data. New York: John Wiley and Sons.

  • Chambless L.E. and K.E. Boyle. 1985. “Maximum Likelihood Methods for Complex Sample Data: Logistic Regression and Discrete Proportional Hazards Models.” Communications in Statistics-Theory and Methods 14: 1377–1392. Doi: https://doi.org/10.1080/03610928508828982.

  • Chantala K. D. Blanchette and C.M. Suchindran. 2011. “Software to Compute Sampling Weights for Multilevel Analysis.” Technical Report Carolina Population Center UNC at Chapter Hill. Available at http://www.cpc.unc.edu/research/tools/data_analysis/ml_sampling_weights (accessed January 30 2018).

  • Claeskens G. 2013. “Lack of Fit Graphics and Multilevel Model Diagnostics.” In The SAGE Handbook of Multilevel Modeling edited by M.A. Scott J.S. Simonoff and B.D. Marx 425–444. Los Angeles: SAGE Publications.

  • Dean N. and M. Pagano. 2015. “Evaluating Confidence Interval Methods for Binomial Proportions in Clustered Surveys.” Journal of Survey Statistics and Methodology 3: 484–503. Doi: https://doi.org/10.1093/jssam/smv024.

  • Deville J.C. and C.-E. Särndal. 1992. “Calibration Estimators in Survey Sampling.” Journal of the American Statistical Association 87: 376–382. Doi: https://doi.org/10.1080/01621459.1992.10475217.

  • Deville J.C. C.-E. Särndal and O. Sautory. 1993. “Generalized Raking Procedures in Survey Sampling.” Journal of the American Statistical Association 88: 1013–1020. Doi: https://doi.org/10.1080/01621459.1993.10476369.

  • DuMouchel W.H. and G.J. Duncan. 1983. “Using Sample Survey Weights in Multiple Regression Analyses of Stratified Samples.” Journal of the American Statistical Association 78: 535–543. Doi: https://doi.org/10.1080/01621459.1983.10478006.

  • Ekholm A. and S. Laaksonen. 1991. “Weighting Via Response Modeling in the Finnish Household Budget Survey.” Journal of Official Statistics 7: 325–337.

  • Elliott M.R. and R.J. Little. 2000. “Model-based Alternatives to Trimming Survey Weights.” Journal of Official Statistics 16: 191–210.

  • Elliott M.R. and R. Valliant. 2017. “Inference for Nonprobability Samples.” Statistical Science 32: 249–264. Doi: 10.1214/16-STS598.

  • Eltinge J.L. and I.S. Yansaneh. 1997. “Diagnostics for Formation of Nonresponse Adjustment Cells With an Application to Income Nonresponse in the U.S. Consumer Expenditure Survey.” Survey Methodology 23: 33–40.

  • Feder M. 2011. “Fitting Regression Models to Complex Survey Data – Gelman’s Estimator Revisited.” In Proceedings of the 58th World Statistics Congress of the International Statistical Institute Dublin Ireland August 2011. Available at: http://2011.isiproceedings.org/papers/950551.pdf (accessed January 30 2018).

  • Flores-Cervantes I. and J.M. Brick. 2016. “Nonresponse Adjustments with Misspecified Models in Stratified Designs.” Survey Methodology 42: 161–177.

  • Francisco C.A. and W.A. Fuller. 1991. “Quantile Estimation with a Complex Survey Design.” The Annals of Statistics 19: 454–469. Doi: http://www.jstor.org/stable/2241867.

  • Frankel M.R. 1971. Inference from Survey Samples: an Empirical Investigation. Institute for Social Research University of Michigan Ann Arbor MI USA.

  • Gagne C. G. Roberts and L.-A. Keown. 2014. “Weighted Estimation and Bootstrap Variance Estimation for Analyzing Survey Data: How to Implement in Selected Software.” Statistics Canada: The Research Data Centres Information and Technical Bulletin August 7 2014. Available at: http://www.statcan.gc.ca/pub/12-002-x/2014001/article/11901-eng.htm (accessed January 30 2018).

  • Gelman A. 2007. “Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22: 153–164. Doi: 10.1214/088342306000000691.

  • Gelman A. J.B. Carlin H.S. Stern and D.B. Rubin. 2003. Bayesian Data Analysis (2nd Edition). Boca Raton FL: Chapman & Hall/CRC.

  • Godambe V.P. and M.E. Thompson. 2009. “Estimating Functions and Survey Sampling.” Handbook of Statistics Vol 29B (Sample Surveys: Inference and Analysis): 83–101. Doi: https://doi.org/10.1016/S0169-7161(09)00226-0.

  • Grau E. F. Potter S. Williams and N. Diaz-Tena. 2006. “Nonresponse Adjustment Using Logistic Regression: To Weight or Not to Weight?” In Proceedings of the Survey Research Methods Section of the American Statistical Association Alexandria VA 2006 3073–3080. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.3263&rep=rep1&type=pdf (accessed January 30 2018).

  • Grilli L. and M. Pratesi. 2004. “Weighted Estimation in Multilevel Ordinal and Binary Models in the Presence of Informative Sampling Designs.” Survey Methodology 30: 93–104.

  • Groves R.M. 2006. “Nonresponse Rates and Nonresponse Bias in Household Surveys.” Public Opinion Quarterly 70: 646–675. Doi: https://doi.org/10.1093/poq/nfl033.

  • Hansen M.H. W.G. Madow and B.J. Tepping. 1983. “An Evaluation of Model-Dependent and Probability-Sampling Inferences in Sample Surveys.” Journal of the American Statistical Association 78: 776–793. Doi: https://doi.org/10.1080/01621459.1983.10477018.

  • Hartley H.O. and J.N.K. Rao. 1968. “A New Estimation Theory for Sample Surveys.” Biometrika 55: 547–557. Doi: https://doi.org/10.1093/biomet/55.3.547.

  • Haziza D. and J.F. Beaumont. 2007. “On the Construction of Imputation Classes in Surveys.” International Statistical Review 75: 25–43. Doi: 10.1111/j.1751-5823.2006.00002.x.

  • Haziza D. and J.F. Beaumont. 2017. “Construction of Weights in Surveys: A Review.” Statistical Science 32: 206–226. Doi: 10.1214/16-STS608.

  • Heeringa S.G. B.T. West and P.A. Berglund. 2017. Applied Survey Data AnalysisSecond Edition. Boca Raton FL: Chapman & Hall/CRC Press.

  • Holt D. and T.M.F. Smith. 1979. “Post Stratification.” Journal of the Royal Statistical Society Series A (General) 142: 33–46. Doi: http://www.jstor.org/stable/2344652.

  • Hosmer D.W. S. Lemeshow and X. Sturdivant. 2013. Applied Logistic RegressionThird Edition. New York NY: Wiley.

  • Judkins D.R. 1990. “Fay’s Method for Variance Estimation.” Journal of Official Statistics 6: 223–239.

  • Kalton G. and I. Flores-Cervantes. 2003. “Weighting Methods.” Journal of Official Statistics 19: 81–97.

  • Kaplan D. and A.J. Ferguson. 1999. “On the Utilization of Sample Weights in Latent Variable Models.” Structural Equation Modeling: A Multidisciplinary Journal 6: 305–321. Doi: https://doi.org/10.1080/10705519909540138.

  • Kim J.K. and W.A. Fuller. 2004. “Fractional Hot Deck Imputation.” Biometrika 91: 559–578. Doi: https://doi.org/10.1093/biomet/91.3.559.

  • Kim J.K. and J. Shao. 2014. Statistical Methods for Handling Incomplete Data. Boca Raton FL: CRC Press.

  • Kim J.K. and M. Park. 2010. “Calibration Estimation in Survey Sampling.” International Statistical Review 78: 21–39. Doi: 10.1111/j.1751-5823.2010.00099.x.

  • Kish L. 1965. Survey Sampling. New York NY: Wiley.

  • Kish L. and M.R. Frankel. 1968. “Balanced Repeated Replication for Analytical Statistics.” In Proceedings of the Social Statistics Section of the American Statistical Association 1968 2–10. Available at: http://ww2.amstat.org/sections/srms/Proceedings/y1968/Balanced%20Repeated%20Replications%20For%20Analytical%20Statistics.pdf (accessed January 30 2018).

  • Kish L. and M.R. Frankel. 1970. “Balanced Repeated Replications for Standard Errors.” Journal of the American Statistical Association 65: 1071–1094. Doi: https://doi.org/10.1080/01621459.1970.10481145.

  • Kish L. and M.R. Frankel. 1974. “Inference from Complex Samples.” Journal of the Royal Statistical Society. Series B (Methodological) 36: 1–37. Doi: http://www.jstor.org/stable/2984767.

  • Kolenikov S. 2014. “Calibrating Survey Data using Iterative Proportional Fitting (Raking).” The Stata Journal 14: 22–59.

  • Kolenikov S. 2010. “Resampling Variance Estimation for Complex Survey Data.” Stata Journal 10: 165–199.

  • Kott P.S. 2006. “Using Calibration Weighting to Adjust for Nonresponse and Coverage Errors.” Survey Methodology 32: 133.

  • Kott P.S. 2011. “A Nearly Pseudo-Optimal Method for Keeping Calibration Weights From Falling Below Unity In The Absence Of Nonresponse Or Frame Errors.” Pakistan Journal of Statistics 27: 391–396.

  • Kott P.S. 2012. “Why One Should Incorporate the Design Weights When Adjusting for Unit Nonresponse Using Response Homogeneity Groups.” Survey Methodology 38: 95–99.

  • Kott P.S. and D. Liao. 2012. “Providing Double Protection for Unit Nonresponse with a Nonlinear Calibration-Weighting Routine.” Survey Research Methods 6: 105–111. Doi: http://dx.doi.org/10.18148/srm/2012.v6i2.5076.

  • Korn E.L. and B.I. Graubard. 1999. Analysis of Health Surveys. New York NY: Wiley.

  • Kovačević M.S. and S.N. Rai. 2003. “A Pseudo Maximum Likelihood Approach to Multilevel Modelling of Survey Data.” Communications in Statistics-Theory and Methods 32: 103–121. Doi: https://doi.org/10.1081/STA-120017802.

  • Kovar J.G. J.N.K. Rao and C.F.J. Wu. 1988. “Bootstrap and Other Methods to Measure Errors in Survey Estimates.” Canadian Journal of Statistics 16: 25–45. Doi: 10.2307/3315214.

  • Kreuter F. K. Olson J. Wagner T. Yan T.M. Ezzati-Rice C. Casas-Cordero M. Lemay A. Peytchev R.M. Groves and T.E. Raghunathan. 2010. “Using Proxy Measures and Other Correlates of Survey Outcomes to Adjust for Non-Response: Examples from Multiple Surveys.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 173: 389–407. Doi: 10.1111/j.1467-985X.2009.00621.x.

  • Krewski D. and J.N.K. Rao. 1981. “Inference from Stratified Samples: Properties of the Linearization Jackknife and Balanced Repeated Replication Methods.” The Annals of Statistics 9: 1010–1019. Doi: http://www.jstor.org/stable/2240615.

  • Lavallée P. and J.F. Beaumont. 2016. “Weighting: Principles and Practicalities.” In The SAGE Handbook of Survey Methodology edited by C. Wolf D. Joye T.W. Smith and Y. Fu 460–476. London: Sage.

  • Le Guennec J. and O. Sautory. 2002. “CALMAR 2: Une nouvelle version de la macro Calmar de redressment d’echantillon par calage.” Actes des Journeés de Méthodologie Statistique INSEE Paris. Available in French at: http://jms.insee.fr/files/documents/2002/327_1-JMS2002_SESSION1_LE-GUENNEC-SAUTORY_CALMAR-2_ACTES.PDF (accessed January 30 2018).

  • Lemeshow S. and P. Levy. 1978. “Estimating the Variance of Ratio Estimates in Complex Sample Surveys with Two Primary Units per Stratum––A Comparison of Balanced Replication and Jackknife Techniques.” Journal of Statistical Computation and Simulation 8: 191–205. Doi: https://doi.org/10.1080/00949657908810266.

  • Lessler J.T. and W.D. Kalsbeek. 1992. Nonsampling Error in Surveys. Wiley.

  • Li J. and R. Valliant. 2009. “Survey Weighted Hat Matrix and Leverages.” Survey Methodology 35: 15–24.

  • Li J. and R. Valliant. 2011a. “Linear Regression Influence Diagnostics for Unclustered Survey Data.” Journal of Official Statistics 27: 99–119.

  • Li J. and R. Valliant. 2011b. “Detecting Groups of Influential Observations in Linear Regression using Survey Data: Adapting the Forward Search Method.” Pakistan Journal of Statistics 27: 507–528.

  • Li J. and R. Valliant. 2015. “Linear Regression Diagnostics in Cluster Samples.” Journal of Official Statistics 31: 61–75. https://doi.org/10.1515/jos-2015-0003.

  • Liao D. and R. Valliant. 2012a. “Variance Inflation Factors in the Analysis of Complex Survey Data.” Survey Methodology 38: 53–62.

  • Liao D. and R. Valliant. 2012b. “Condition Indexes and Variance Decompositions for Diagnosing Collinearity in Linear Model Analysis of Survey Data.” Survey Methodology 38: 189–202.

  • Little R.J.A. 1986. “Survey Nonresponse Adjustments for Estimates of Means.” International Statistical Review 54: 139–157. Doi: http://www.jstor.org/stable/1403140.

  • Little R.J.A. 2003. “The Bayesian Approach to Sample Survey Inference.” In Analysis of Survey Data edited by R.L. Chambers and C.J. Skinner 49–57. Chichester West Sussex: Wiley.

  • Little R.J.A. 2004. “To Model or Not to Model? Competing Modes of Inference for Finite Population Sampling.” Journal of the American Statistical Association 99: 546–556. Doi: https://doi.org/10.1198/016214504000000467.

  • Little R.J.A. 2006. “Calibrated Bayes: A Bayes/Frequentist Roadmap.” The American Statistician 60: 213–223. Doi: https://doi.org/10.1198/000313006X117837.

  • Little R.J.A. 2011. “Calibrated Bayes for Statistics in General and Missing Data in Particular.” Statistical Science 26: 162–186. Doi: 10.1214/10-STS318.

  • Little R.J.A. 2012. “Calibrated Bayes: An Alternative Inferential Paradigm for Official Statistics (with discussion and rejoinder).” Journal of Official Statistics 28: 309–372.

  • Little R.J.A. 2015. “Calibrated Bayes An Inferential Paradigm for Official Statistics in the Era of Big Data.” Statistical Journal of the IAOS 31: 555–563. Doi: https://doi.org/10.3233/SJI-150944.

  • Little R.J.A. and S. Vartivarian. 2005. “Does Weighting for Nonresponse Increase the Variance of Survey Means?” Survey Methodology 31: 161–168.

  • Little R.J.A. and H. Zheng. 2007. “The Bayesian Approach to the Analysis of Finite Population Surveys.” Bayesian Statistics 8: 1–20.

  • Lohr S. 2009. Sampling: Design and AnalysisSecond Edition. Boston MA: Cengage Learning.

  • Lohr S. 2014. “Design Effects for a Regression Slope in a Cluster Sample.” Journal of Survey Statistics and Methodology 2: 97–125. Doi: https://doi.org/10.1093/jssam/smu003.

  • Lumley T. 2010. Complex Surveys: A Guide to Analysis Using R. New York NY: Wiley.

  • Lumley T. and A. Scott. 2013. “Partial Likelihood Ratio Tests for the Cox Model under Complex Sampling.” Statistics in Medicine 32: 110–123. Doi: https://doi.org/10.1002/sim.5492.

  • Lumley T. and A. Scott. 2014. “Tests for Regression Models Fitted to Survey Data.” Australian & New Zealand Journal of Statistics 56: 1–14. Doi: https://doi.org/10.1111/anzs.12065.

  • Lumley T. and A. Scott. 2015. “AIC and BIC for Modeling with Complex Survey Data.” Journal of Survey Statistics and Methodology 3: 1–18. Doi: https://doi.org/10.1093/jssam/smu021.

  • Lumley T. and A. Scott. 2017. “Fitting Regression Models to Survey Data.” Statistical Science 32: 265–278. Doi: https://10.1214/16-STS605.

  • Lundström S. and C.E. Särndal. 1999. “Calibration as a Standard Method for Treatment of Nonresponse.” Journal of Official Statistics 15: 305–327.

  • Lunn D. C. Jackson N. Best A. Thomas and D. Spiegelhalter. 2012. The BUGS book: A Practical Introduction to Bayesian Analysis. CRC press.

  • Morel G. 1989. “Logistic Regression under Complex Survey Designs.” Survey Methodology 15: 203–223.

  • Muthén B.O. and A. Satorra. 1995. “Complex Sample Data in Structural Equation Modeling.” Sociological Methodology 25: 267–316. Doi: https://doi.org/10.2307/271070.

  • Nordberg L. 1989. “Generalized Linear Modeling of Sample Survey Data.” Journal of Official Statistics 5: 223–239.

  • Oberski D.L. 2014. “lavaan.survey: An R package for Complex Survey Analysis of Structural Equation Models.” Journal of Statistical Software 57: 1–27. Doi: https://doi.org/10.18637/jss.v057.i01.

  • Oh H.L. and F.J. Scheuren. 1983. “Weighting Adjustment for Unit Nonresponse.” In Incomplete Data in Sample Surveys edited by W.G. Madow I. Olkin and D.B. Rubin 143–184. New York: Academic Press.

  • Orchard T. and M.A. Woodbury. 1972. “A Missing Information Principle: Theory and Applications.” Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability Volume 1: Theory of Statistics 697–715. University of California Press: Berkeley CA. Available at: https://projecteuclid.org/download/pdf_1/euclid.bsmsp/1200514117 (accessed January 30 2018).

  • Owen A.B. 2001. Empirical Likelihood. New York: Chapman & Hall.

  • Pacifico D. 2014. “sreweight: A Stata Command to Reweight Survey Data to External Totals.” The Stata Journal 14: 4–21.

  • Peress M. 2010. “Correcting for Survey Nonresponse using Variable Response Propensity.” Journal of the American Statistical Association 105: 1418–1430. Doi: https://doi.org/10.1198/jasa.2010.ap09485.

  • Pfeffermann D. 1993. “The Role of Sampling Weights When Modeling Survey Data.” International Statistical Review 61: 317–337. Doi: https://doi.org/10.2307/1403631.

  • Pfeffermann D. 2011. “Modelling of Complex Survey Data: Why Model? Why Is It a Problem? How Can We Approach It?” Survey Methodology 37: 115–136.

  • Pfeffermann D. F.A.D.S. Moura and P.L.D.N. Silva. 2006. “Multi-level Modelling Under Informative Sampling.” Biometrika 93: 943–959. Doi: https://doi.org/10.1093/biomet/93.4.943.

  • Pfeffermann D. and A. Sikov. 2011. “Imputation and Estimation under Nonignorable Nonresponse in Household Surveys with Missing Covariate Information.” Journal of Official Statistics 27: 181–209.

  • Pfeffermann D. C.J. Skinner D.J. Holmes H. Goldstein and J. Rasbash. 1998. “Weighting for Unequal Selection Probabilities in Multilevel Models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60: 23–40. Doi: https://doi.org/10.1111/1467-9868.00106.

  • Pfeffermann D. and M. Sverchkov. 2009. “Inference Under Informative Sampling.” In Handbook of Statistics – Sample Surveys: Inference and Analysis (Volume 29 Part B) edited by V.N. Gudivada V.V. Raghavan V. Govindaraju and C.R. Rao 455–487.

  • Potter F.J. 1990. “A Study of Procedures to Identify and Trim Extreme Sampling Weights.” In Proceedings of the American Statistical Association Section on Survey Research Methods 225–230. Available at: http://ww2.amstat.org/sections/SRMS/Proceedings/papers/1990_034.pdf (accessed January 30 2018).

  • Rabe-Hesketh S. and A. Skrondal. 2006. “Multilevel Modelling of Complex Survey Data.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 169: 805–827. Doi: https://doi.org/10.1111/j.1467-985X.2006.00426.x.

  • Rao J.N.K. 2005. “Interplay Between Sample Survey Theory and Practice: An Appraisal.” Survey Methodology 31: 117–138.

  • Rao J.N.K. and J. Shao. 1999. “Modified Balanced Repeated Replication for Complex Survey Data.” Biometrika 86: 403–415. Doi: https://doi.org/10.1093/biomet/86.2.403.

  • Rao J.N.K. and A.J. Scott. 1981. “The Analysis of Categorical Data from Complex Sample Surveys: Chi-squared Tests for Goodness of Fit and Independence in Two-way Tables.” Journal of the American Statistical Association 76: 221–230. Doi: https://doi.org/10.2307/2287815.

  • Rao J.N.K. and A.J. Scott. 1984. “On Chi-squared Tests for Multiway Contingency Tables with Cell Proportions Estimated from Survey Data.” The Annals of Statistics 12: 46–60. Doi: http://dx.doi.org/10.1214/aos/1176346391.

  • Rao J.N.K. and A.J. Scott. 1987. “On Simple Adjustments to Chi-square Tests with Sample Survey Data.” The Annals of Statistics 15: 385–397. Doi: https://doi.org/10.1214/aos/1176350273.

  • Rao J.N.K. and C.F.J. Wu. 1985. “Inference from Stratified Samples: Second-order Analysis of Three Methods for Nonlinear Statistics.” Journal of the American Statistical Association 80: 620–630. Doi: https://doi.org/10.2307/2288478.

  • Rao J.N.K. and C.F.J. Wu. 1987. “Methods for Standard Errors and Confidence Intervals from Sample Survey Data: Some Recent Work.” Bulletin of the International Statistical Institute 3: 5–21.

  • Rao J.N.K. and C.F.J. Wu. 1988. “Resampling Inference with Complex Survey Data.” Journal of the American Statistical Association 83: 231–241. Doi: https://doi.org/10.2307/2288945.

  • Reiter J.P. T.E. Raghunathan and S.K. Kinney. 2006. “The Importance of Modeling the Sampling Design in Multiple Imputation for Missing Data.” Survey Methodology 32: 143–149.

  • Roberts G. J.N.K. Rao and S. Kumar. 1987. “Logistic Regression Analysis of Sample Survey Data.” Biometrika 74: 1–12. Doi: https://doi.org/10.2307/2336016.

  • Rubin D.B. 1985. “The Use of Propensity Scores in Applied Bayesian Inference.” In Bayesian Statistics 2 edited by J.M. Bernardo M.H. Degroot D.V. Lindley and A.F.M. Smith 463–472. Elsevier Science Publishers B.V.

  • Ryan B.L. J. Koval B. Corbett A. Thind M.K. Campbell and M. Stewart. 2015. “Assessing the Impact of Potentially Influential Observations in Weighted Logistic Regression.” The Research and Data Centres Information and Technical Bulletin (Statistics Canada) 7. Available at: http://www.statcan.gc.ca/pub/12-002-x/2015001/article/14147-eng.htm (accessed January 30 2018).

  • Särndal C.E. B. Swensson and J. Wretman. 1992. Model Assisted Survey Sampling. New York: Springer-Verlag Inc.

  • Särndal C.E. and B. Swensson. 1987. “A General View of Estimation for Two Phases of Selection with Applications to Two-Phase Sampling and Nonresponse.” International Statistical Review 55: 279–294. Doi: https://doi.org/10.2307/1403406.

  • Shah B.V. M.M. Holt and R.E. Folsom. 1977. “Inference about Regression Models from Sample Survey Data.” Bulletin of the International Statistical Institute 47: 43–57.

  • Shao J. 2003. “Impact of the Bootstrap on Sample Surveys.” Statistical Science 18: 191–198.

  • Shao J. and R.R. Sitter. 1996. “Bootstrap for Imputed Survey Data.” Journal of the American Statistical Association 91: 1278–1288. Doi: https://doi.org/10.2307/2291746.

  • Shao J. and D. Tu. 1995. The Jackknife and Bootstrap. New York: Springer.

  • Si Y. N.S. Pillai and A. Gelman. 2015. “Bayesian Nonparametric Weighted Sampling Inference.” Bayesian Analysis 10: 605–625. Doi: http://dx.doi.org/10.1214/14-BA924.

  • Sitter R.R. and C. Wu. 2001. “A Note on Woodruff Confidence Intervals for Quantiles.” Statistics & Probability Letters 52: 353–358. Doi: https://doi.org/10.1016/S0167-7152(00)00207-8.

  • Skinner C.J. and D.J. Holmes. 2003. “Random Effects Models for Longitudinal Survey Data.” Chapter 14 in Analysis of Survey Data edited by R.L. Chambers and C.J. Skinner. John Wiley and Sons.

  • Skinner C.J. D. Holt and T.F. Smith. 1989. Analysis of Complex Surveys. John Wiley & Sons.

  • Stapleton L.M. 2002. “The Incorporation of Sample Weights into Multilevel Structural Equation Models.” Structural Equation Modeling 9: 475–502. Doi: https://doi.org/10.1207/S15328007SEM0904_2.

  • Stapleton L.M. 2006. “An Assessment of Practical Solutions for Structural Equation Modeling with Complex Sample Data.” Structural Equation Modeling 13: 28–58. Doi: https://doi.org/10.1207/s15328007sem1301_2.

  • Stapleton L.M. and Y. Kang. 2016. “Design Effects of Multilevel Estimates From National Probability Samples.” Sociological Methods & Research available at http://journals.sagepub.com/doi/abs/10.1177/0049124116630563 (accessed January 30 2018). Doi: https://doi.org/10.1177/0049124116630563.

  • Thompson M.E. 2015. “Using Longitudinal Complex Survey Data.” Annual Review of Statistics and Its Application 2: 305–320. Doi: https://doi.org/10.1146/annurev-statistics-010814-020403.

  • Toth D. 2017. “rpms: An R Package for Modeling Survey Data with Regression Trees.” Available at https://cran.r-project.org/web/packages/rpms/vignettes/rpms_2017_02_10.pdf (accessed January 1 2018).

  • Valliant R. 2004. “The Effect of Multiple Weighting Steps on Variance Estimation.” Journal of Official Statistics 20(1): 1–18.

  • Valliant R. J.A. Dever and F. Kreuter. 2013. Practical Tools for Designing and Weighting Survey Samples. New York: Springer.

  • Valliant R. A.H. Dorfman and R.M. Royall. 2000. Finite Population Sampling and Inference: a Prediction Approach. New York: Wiley.

  • Valliant R. and K.F. Rust. 2010. “Degrees of Freedom Approximations and Rules-of-Thumb.” Journal of Official Statistics 26: 585–602.

  • West B.T. 2009. “A Simulation Study of Alternative Weighting Class Adjustments for Nonresponse when Estimating a Population Mean from Complex Sample Survey Data.” In Proceedings of the section on Survey Research Methods: Joint Statistical Meetings 4920–4933. Available at: http://ww2.amstat.org/sections/srms/Proceedings/y2009/Files/305394.pdf (accessed January 30 2018).

  • West B.T. L. Beer W. Gremel J. Weiser C. Johnson S. Garg and J. Skarbinski. 2015. “Weighted Multilevel Models: A Case Study.” American Journal of Public Health 105: 2214–2215. Doi: https://dx.doi.org/10.2105%2FAJPH.2015.302842.

  • West B.T. P.A. Berglund and S.G. Heeringa. 2008. “A Closer Examination of Subpopulation Analysis of Complex-Sample Survey Data.” The Stata Journal 8: 520–531.

  • West B.T. and S.E. McCabe. 2017. “Alternative Approaches to Assessing Nonresponse Bias in Longitudinal Survey Estimates: An Application to Substance Use Outcomes among Young Adults in the U.S.” American Journal of Epidemiology 185: 591–600. Doi: https://doi.org/10.1093/aje/kww115.

  • West B.T. J.W. Sakshaug and G.A.S. Aurelien. 2016. “How Big of a Problem is Analytic Error in Secondary Analyses of Survey Data?” PLoS ONE 11. Doi: https://doi.org/10.1371/journal.pone.0158120.

  • Wolter K.M. 2007. Introduction to Variance EstimationSecond Edition. New York: Springer-Verlag.

  • Woodruff R.S. 1952. “Confidence Intervals for Medians and other Position Measures.” Journal of the American Statistical Association 47: 635–646. Doi: https://doi.org/10.2307/2280781.

  • Wu Y.Y. and W.A. Fuller. 2006. “Estimation of Regression Coefficients with Unequal Probability Samples.” In Proceedings of the Survey Research Methods Section: American Statistical Association 3892–3899. Available at: https://ww2.amstat.org/sections/srms/Proceedings/y2006/Files/JSM2006-000807.pdf (accessed January 30 2018).

  • Wun L.M. T.M. Ezzati-Rice N. Diaz-Tena and J. Greenblatt. 2007. “On Modeling Response Propensity for Dwelling Unit (DU) Level Non-response Adjustment in the Medical Expenditure Panel Survey (MEPS).” Statistics in Medicine 26: 1875–1884. Doi: https://doi.org/10.1002/sim.2809.

  • Zangeneh S.Z. and R.J. Little. 2015. “Bayesian Inference for the Finite Population Total from a Heteroscedastic Probability Proportional to Size Sample.” Journal of Survey Statistics and Methodology 3: 162–192. Doi: https://doi.org/10.1093/jssam/smv002.

  • Zhang D. and X. Lin. 2008. “Variance Component Testing in Generalized Linear Mixed Models for Longitudinal/Clustered Data and Other Related Topics.” In Random Effect and Latent Variable Model Selection edited by D.B. Dunson. Springer Lecture Notes in Statistics 192.

  • Zheng H. and R.J. Little. 2003. “Penalized Spline Model-Based Estimation of the Finite Populations Total from Probability-Proportional-to-Size Samples.” Journal of Official Statistics 19: 99–117.

  • Zhou H. M.R. Elliott and T.E. Raghunathan. 2016a. “Synthetic Multiple-Imputation Procedure for Multistage Complex Samples.” Journal of Official Statistics 32: 231–256. Doi: https://doi.org/10.1515/JOS-2016-0011.

  • Zhou H. M.R. Elliott and T.E. Raghunathan. 2016b. “Multiple Imputation in Two-Stage Cluster Samples Using the Weighted Finite Population Bayesian Boostrap.” Journal of Survey Statistics and Methodology 4: 139–170. Doi: https://doi.org/10.1093/jssam/smv031.

  • Zhou H. M.R. Elliott and T.E. Raghunathan. 2016c. “A Two-Step Semiparametric Method to Accommodate Sampling Weights in Multiple Imputation.” Biometrics 72: 242–252. Doi: https://10.1111/biom.12413.

  • Zhu M. 2014. “Analyzing Multilevel Models with the GLIMMIX Procedure.” Paper SAS026-2014. Cary NC: SAS Institute Inc.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,837
5-year IMPACT FACTOR: 0,934

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.963
Source Normalized Impact per Paper (SNIP) 2018: 1.020

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1843 1210 44
PDF Downloads 1672 1254 281