Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking

Open access


In this article we propose a methodology for estimating the GDP of a country’s different regions, providing quarterly profiles for the annual official observed data. Thus the article offers a new instrument for short-term monitoring that allows the analysts to quantify the degree of synchronicity among regional business cycles. Technically, we combine time-series models with benchmarking methods to process short-term quarterly indicators and to estimate quarterly regional GDPs ensuring their temporal and transversal consistency with the National Accounts data. The methodology addresses the issue of nonadditivity, explicitly taking into account the transversal constraints imposed by the chain-linked volume indexes used by the National Accounts, and provides an efficient combination of structural as well as short-term information. The methodology is illustrated by an application to the Spanish economy, providing real-time quarterly GDP estimates, that is, with a minimum compilation delay with respect to the national quarterly GDP. The estimated quarterly data are used to assess the existence of cycles shared among the Spanish regions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abad A. and E.M. Quilis. 2005. “Software to Perform Temporal Disaggregation of Economic Time Series.” Eurostat Working Papers and Series. Available at: http://ec.europa.eu/eurostat/documents/4187653/5774917/LN-SR012007-EN.PDF/c83eb69ee3a9-4fdd-923d-76c09fea6f7b (accessed October 2015).

  • Abad A. A. Cuevas and E.M. Quilis. 2007. “Chain-Linked Volume Indexes: a Practical Guide.” Universidad Carlos III de Madrid Instituto Flores de Lemus Boletín de Inflación y Análisis Macroeconómico 157: 72–85. Available at http://e-archivo.uc3m.es/handle/10016/20332#preview (accessed October 2015).

  • Álvarez F. 1989. “Base Estadística en España de la Contabilidad Nacional Trimestral.” Revista Española de Economía 6: 59–84.

  • Álvarez R. 2005. “Notas Sobre Fuentes Estadísticas.” In Servicio de Estudios del Banco de España El análisis de la economía española Alianza Editorial Madrid Spain.

  • Bloem A.M. R.J. Dippelsman and N.O. Mæhle. 2001. Quarterly National Accounts Manual. Concepts Data Sources and Compilation. International Monetary Fund. Available at: https://www.imf.org/external/pubs/ft/qna/2000/Textbook/ch1.pdf (accessed October 2015).

  • Bournay J. and G. Laroque. 1979. “Réflexions sur la Méthode D’elaboration des Comptes Trimestriels.” Annales de l’INSEE 36: 3–30. Available at: http://www.jstor.org/stable/20075332.

  • Caporello G. and A. Maravall. 2004. “Program TSW. Revised Manual.” Bank of Spain Occasional Paper no. 0408. http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosOcasionales/04/Fic/do0408e.pdf (accessed October 2015).

  • Chow G. and A.L. Lin. 1971. “Best Linear Unbiased Distribution and Extrapolation of Economic Time Series by Related Series.” Review of Economic and Statistics 53: 372–375. Available at: http://www.jstor.org/stable/1928739.

  • Denton F.T. 1971. “Adjustment of Monthly or Quarterly Series to Annual Totals: an Approach Based on Quadratic Minimization.” Journal of the American Statistical Society 66: 99–102. Doi: http://dx.doi.org/10.1080/01621459.1971.10482227.

  • Di Fonzo T. 1987. La Stima Indiretta di Serie Economiche Trimestrali. Cleup Editore Padova Italy.

  • Di Fonzo T. 1990. “The Estimation of M Disaggregate Time Series when Contemporaneous and Temporal Aggregates are Known.” Review of Economics and Statistics 72: 178–182. Doi: http://dx.doi.org/10.2307/2109758.

  • Di Fonzo T. 2002. “Temporal Disaggregation of Economic Time Series: Towards a Dynamic Extension.” European Commission (Eurostat) Working Papers and Studies Theme 1 General Statistics (pp. 41). Available at: http://ec.europa.eu/eurostat/documents/3888793/5816173/KS_AN-03-035-EN.PDF/21c4417c-dbec-45ec-b440-fe8bf95661b7?version=1.0 (accessed October 2015).

  • Di Fonzo T. and M. Marini. 2003. “Benchmarking Systems of Seasonally Adjusted Time Series According to Denton’s Movement Preservation Principle.” Dipartimento di Scienze Statistiche Università di Padova Working Paper no. 2003–09. Available at: http://www.oecd.org/std/21778574.pdf (accessed October 2015).

  • Eurostat. 1998. Handbook of Quarterly National Accounts. Luxembourg: Statistical Office of the EC.

  • Fernández R.B. 1981. “Methodological Note on the Estimation of Time Series.” Review of Economic and Statistics 63: 471–478. Doi: http://dx.doi.org/10.2307/1924371.

  • Gómez V. and A. Maravall. 1996. “Programs TRAMO and SEATS.” Bank of Spain Working Paper no. 9628. Available at: http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/96/Fich/dt9628e.pdf (accessed October 2015).

  • Gómez V. and A. Maravall (1998a) “Guide for using the programs TRAMO and SEATS” Bank of Spain Working Paper no. 9805. Available at: http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/98/Fic/dt9805e.pdf (accessed October 2015).

  • Gómez V. and A. Maravall (1998b) “Automatic modeling methods for univariate series” Bank of Spain Working Paper no. 9808. Available at: http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/98/Fic/dt9808e.pdf (accessed October 2015).

  • Gregoir S. 1994. “Propositions Pour une Désagrégation Temporelle Basée sur des Modèles Dynamiques Simples.” In Workshop on Quarterly National Accounts ed. Eurostat. Luxembourg: Statistical Office of the EC. Available at: http://ec.europa.eu/eurostat/documents/3888793/5815741/KS-AN-03-014-EN.PDF/284f1001-fd36-4999-b007-a22033e8aaf9 (accessed October 2015).

  • INE. 1993. Contabilidad Nacional Trimestral de España (CNTR). Metodología y serie trimestral 1970–1992. Instituto Nacional de Estadística.

  • Litterman R.B. 1983. “A random walk Markov model for the distribution of time series.” Journal of Business and Economic Statistics 1: 169–173. Available at: http://www.jstor.org/stable/1391858.

  • Lehmann R. and K. Wohlrabe. 2012. “Forecasting GDP at the Regional Level with Many Predictors.” CESIFO Working Paper no. 3956. Available at: http://www-sre.wu.ac.at/ersa/ersaconfs/ersa13/ERSA2013_paper_00015.pdf (accessed October 2015).

  • Martínez A. and F. Melis. 1989. “La Demanda y la Oferta de Estadísticas Coyunturales.” Revista Española de Economía 6: 7–58.

  • Polasek W. and R. Séllner. 2010. “Spatial Chow-Lin Methods for Data Completion in Econometric Flow Models.” Institut für Höhere Studien (HIS) Economic Series no. 255. Available at: https://www.ihs.ac.at/publications/eco/es-255.pdf (accessed October 2015).

  • Proietti T. 2006. “Temporal Disaggregation by State Space Methods: Dynamic Regression Methods Revisited.” Econometrics Journal 9: 357–372. Doi: http://dx.doi.org/10.1111/j.1368-423X.2006.00189.

  • Proietti T. 2011. “Multivariate Temporal Disaggregation with Cross-Sectional Constraints.” Journal of Applied Statistics 38: 1455–1466. Doi: http://dx.doi.org/10.1080/02664763.2010.505952.

  • Quilis E.M. 2005. “Benchmarking Techniques in the Spanish Quarterly National Accounts.” European Commission Working papers and studies (Eurostat-OECD Workshop on Frontiers in Benchmarking Techniques and Their Application to Official Statistics Luxembourg April 7–8 2005). Available at: http://ec.europa.eu/eurostat/documents/4187653/5774917/LN-SR012007-EN.PDF/c83eb69e-e3a9-4fdd-923d-76c09fea6f7b (accessed October 2015).

  • Salazar E. R. Smith S. Wright and M. Weale. 1994. “Indicators of Monthly National Accounts.” In Workshop on Quarterly National Accounts ed. Eurostat. Luxembourg: Statistical Office of the EC. Available at: http://ec.europa.eu/eurostat/documents/3888793/5815741/KS-AN-03-014-EN.PDF/284f1001-fd36-4999-b007-a22033e8aaf9 (accessed October 2015).

  • Santos-Silva J.M.C. and F. Cardoso. 2001. “The Chow-Lin Method Using Dynamic Models.” Economic Modelling 18: 269–280. Doi: http://dx.doi.org/10.1016/S0264-9993(00)00039-0.

  • Vidoli F. and C. Mazziotta. 2012. “Spatial Composite and Disaggregate Indicators: Chow-Lin Methods and Applications.” Real Estate 2: 9–19. Available at: http://fvidoli.weebly.com/uploads/2/3/0/8/23088460/eng_spatialcompositeanddisaggregate.pdf (accessed October 2015).

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.837
5-year IMPACT FACTOR: 0.934

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.963
Source Normalized Impact per Paper (SNIP) 2018: 1.020

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 298 122 1
PDF Downloads 193 108 2