Quality Assessment of Imputations in Administrative Data

Open access

Abstract

This article contributes a framework for the quality assessment of imputations within a broader structure to evaluate the quality of register-based data. Four quality-related hyperdimensions examine the data processing from the raw-data level to the final statistics. Our focus lies on the quality assessment of different imputation steps and their influence on overall data quality. We suggest classification rates as a measure of accuracy of imputation and derive several computational approaches.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andridge R.R. and R.J.A. Little. 2010. “A Review of Hot Deck Imputation for Survey Non-response.” International Statistical Review 78: 40-64. Doi: http://dx.doi.org/10.1111/j.1751-5823.2010.00103.x.

  • Axelson M. A. Holmberg I. Jansson P. Werner and S. Westling. 2012. “Doing a Register-Based Census for the First Time: The Swedish Experiences.” In Proceedings of JSM 2012 Survey Statistics Section July 28-August 2 2012. 1481-1489. Alexandria VA: American Statistical Association.

  • Batini C. and M. Scannapieco. 2006. Data Quality: Concepts Methodologies and Techniques. New York: Springer.

  • Berka C. S. Humer M. Lenk M. Moser H. Rechta and E. Schwerer. 2010. “A Quality Framework for Statistics based on Administrative Data Sources using the Example of the Austrian Census 2011.” Austrian Journal of Statistics 39: 299-308.

  • Berka C. S. Humer M. Lenk M. Moser H. Rechta and E. Schwerer. 2012. “Combination of Evidence from Multiple Administrative Data Sources: Quality Assessment of the Austrian Register-Based Census 2011.” Statistica Neerlandica 66: 18-33. Doi: http://dx.doi.org/10.1111/j.1467-9574.2011.00506.x.

  • Chambers R. 2001. “Evaluation Criteria for Statistical Editing and Imputation.” National Statistics Methodological Series 28: 1-41.

  • Daas P. J. Arends-Toth B. Schouten and L. Kuijvenhoven. 2008. “Quality Framework for the Evaluation of Administrative Data.” In Proceedings of Q2008 European Conference on Quality in Official Statistics. 8-11 July 2008. p 1-10. Available at: http://q2008.istat.it/sessions/paper/21Daas.pdf (accessed May 6 2015).

  • Daas P. and T. Fonville. 2007. Quality Control of Dutch Administrative Registers: An Inventory of Quality Aspects. Presented at the seminar on Registers in Statistics- Methodology and Quality 21-23 May 2007 Helsinki. Available at: http://www.oecd.org/std/38883259.pdf (accessed May 6 2015).

  • Daas P. S. Ossen R. Vis-Visschers and J. Arends-To´th. 2009. “Checklist for the Quality Evaluation of Administrative Data Sources.” Discussion Paper No. 09042 Statistics Netherlands. Available at: http://www.cbs.nl/nr/rdonlyres/0dbc2574-cdae-4a6d-a68a-88458cf05fb2/0/200942x10pub.pdf (accessed May 6 2015).

  • Daas P.J. S.J. Ossen M. Tennekes and E.S. Nordholt. 2012. “Evaluation of the Quality of Administrative Data used in the Dutch Virtual Census.” In Proceedings of JSM 2012 Survey Statistics Section July 28-August 2 2012. 1462-1472. Alexandria VA: American Statistical Association.

  • European Commission. 2010. “Commission Regulation (EU) No 1151/2010.” Official Journal of the European Union 53 L 324: 1-10. Available at: http://eurlex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010R1151&from=EN (accessed May 6 2015).

  • Eurostat. 2003. “Quality Assessment of Administrative Data for Statistical Purposes.” Contribution for the Working Group “Assessment of Quality in Statistics” October 2-3 2003. Luxembourg. Available at: http://unstats.un.org/unsd/EconStatKB/Attachment323.aspx (accessed May 6 2015).

  • Hendriks C. 2012. “Input Data Quality in Register Based Statistics-the Norwegian Experience.” In Proceedings of JSM 2012 Survey Statistics Section July 28-August 2 2012. 1473-1480. Alexandria VA: American Statistical Association.

  • Herzog T.N. F.J. Scheuren and W.E. Winkler. 2007. Data Quality and Record Linkage Techniques. New York: Springer.

  • Hui G. and H.I. AlDarmaki. 2012. “Editing and Imputation of the 2011 Abu Dhabi Census”. Paper presented at the UNECE Work Session on Statistical Data Editing Oslo September 24-26 2012. Available at: http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2012/44_Abu_Dhabi.pdf (accessed May 6 2015).

  • Iwig W. M. Berning P. Marck and M. Prell. 2013. Data Quality Assessment Tool for Administrative Data. Technical Report Office of Survey Methods Research (OSMR). Available at: http://www.bls.gov/osmr/datatool.pdf (accessed April 30 2015).

  • Kapteyn A. and J. Ypma. 2007. “Measurement Error and Misclassification: A Comparison of Survey and Administrative Data.” Journal of Labor Economics 255: 513-551.

  • Karr A. A. Sanil and D. Banks. 2006. “Data Quality: A Statistical Perspective.” Statistical Methodology 3: 137-173. Doi: http://dx.doi.org/10.1016/j.stamet.2005.08.005.

  • Kausl A. 2012. “The Data Imputation Process of the Austrian Register-Based Census.” Paper presented at the UNECE Work Session on Statistical Data Editing Oslo September 24-26 2012. Available at: http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2012/41_Austria_Kausl.pdf (accessed May 6 2015).

  • Laitila T. A. Wallgren and B. Wallgren. 2011. Quality Assessment of Administrative Data. Research and Development-Methodology Reports from Statistics Sweden 2011:2 Statistics Sweden. Available at: http://www.scb.se/statistik/_publikationer/OV9999_2011A01_BR_X103BR1102.pdf (accessed May 6 2015).

  • Lanzieri G. 2009. A Quantitative Approach to the European Union Census Quality Reporting. Note by the Statistical Office of the European Communities. Available at: http://www.academia.edu/2565773/A_quantitative_approach_to_the_European_Union_census_quality_reporting (accessed April 30 2015).

  • Lenk M. 2008. Methods of Register-based Census in Austria. Technical Report Statistik Austria Vienna. Available at: http://www.statistik.at/web_de/static/methods_of_register-based_census_in_austria_055160.pdf (accessed May 6 2015).

  • Little R.J.A. and D.B. Rubin. 2002. Statistical analysis with missing data. New York: Wiley.

  • Pipino L.L. Y.W. Lee and R.Y. Wang. 2002. “Data Quality Assessment.” Communications of the ACM 45: 211-218.

  • Roth P.L. 1994. “Missing data: A Conceptual Review for Applied Psychologists.” Personnel Psychology 47: 537-560. Doi: http://dx.doi.org/10.1111/j.1744-6570.1994.tb01736.x.

  • UNECE. 2007. Register Based Statistics in the Nordic Countries. Review on Best Practices with Focus on Population and Social Statistics. Technical Report United Nations Economic Commission for Europe. Available at: http://unstats.un.org/unsd/dnss/docViewer.aspx?docID=2764 (accessed May 6 2015).

  • UNECE. 2014. Measuring Population and Housing-Practices of UNECE Countries in the 2010 Round of Censuses. Technical Report United Nations Economic Commission for Europe. Available at: http://www.unece.org/fileadmin/DAM/stats/publications/2013/Measuring_population_and_housing_2010.pdf (accessed May 6 2015).

  • UNECE and EUROSTAT. 2006. Conference of European Statisticians Recommendations for the 2010 Censuses Of Population and Housing. Technical Report United Nations Economic Commission for Europe. Available at: http://www.unece.org/fileadmin/DAM/stats/publications/CES_2010_Census_Recommendations_English.pdf (accessed May 6 2015).

  • Wallgren A. and B. Wallgren. 2007. Register-Based Statistics. New York: Wiley.

  • Zhang L.-C. 2011. “A Unit-Error Theory for Register-Based Household Statistics.” Journal of Official Statistics 27: 415-432.

  • Zhang L.-C. 2012. “Topics of Statistical Theory for Register-Based Statistics and Data Integration.” Statistica Neerlandica 66: 41-63. Doi: http://dx.doi.org/10.1111/j.1467-9574.2011.00508.x.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,837
5-year IMPACT FACTOR: 0,934

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.963
Source Normalized Impact per Paper (SNIP) 2018: 1.020

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 560 310 16
PDF Downloads 186 115 7