Quality Assessment of Imputations in Administrative Data

  • 1 Chamber of Labour Vienna – Department of Economics, Prinz-Eugen Str. 20–22, 1040, Vienna, Austria
  • 2 Vienna University of Economics, Welthandelsplatz 1, 1020, Vienna, Austria.
  • 3 Statistics Austria, Unit Register-based census, Guglgasse 13, A-1110, Vienna, Austria
  • 4 Vienna University of Economics, Welthandelsplatz 1, 1020, Vienna, Austria

Abstract

This article contributes a framework for the quality assessment of imputations within a broader structure to evaluate the quality of register-based data. Four quality-related hyperdimensions examine the data processing from the raw-data level to the final statistics. Our focus lies on the quality assessment of different imputation steps and their influence on overall data quality. We suggest classification rates as a measure of accuracy of imputation and derive several computational approaches.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andridge, R.R. and R.J.A. Little. 2010. “A Review of Hot Deck Imputation for Survey Non-response.” International Statistical Review 78: 40-64. Doi: http://dx.doi.org/10.1111/j.1751-5823.2010.00103.x.

  • Axelson, M., A. Holmberg, I. Jansson, P. Werner, and S. Westling. 2012. “Doing a Register-Based Census for the First Time: The Swedish Experiences.” In Proceedings of JSM 2012, Survey Statistics Section, July 28-August 2, 2012. 1481-1489. Alexandria, VA: American Statistical Association.

  • Batini, C. and M. Scannapieco. 2006. Data Quality: Concepts, Methodologies and Techniques. New York: Springer.

  • Berka, C., S. Humer, M. Lenk, M. Moser, H. Rechta, and E. Schwerer. 2010. “A Quality Framework for Statistics based on Administrative Data Sources using the Example of the Austrian Census 2011.” Austrian Journal of Statistics 39: 299-308.

  • Berka, C., S. Humer, M. Lenk, M. Moser, H. Rechta, and E. Schwerer. 2012. “Combination of Evidence from Multiple Administrative Data Sources: Quality Assessment of the Austrian Register-Based Census 2011.” Statistica Neerlandica 66: 18-33. Doi: http://dx.doi.org/10.1111/j.1467-9574.2011.00506.x.

  • Chambers, R. 2001. “Evaluation Criteria for Statistical Editing and Imputation.” National Statistics Methodological Series 28: 1-41.

  • Daas, P., J. Arends-Toth, B. Schouten, and L. Kuijvenhoven. 2008. “Quality Framework for the Evaluation of Administrative Data.” In Proceedings of Q2008 European Conference on Quality in Official Statistics. 8-11 July, 2008. p 1-10. Available at: http://q2008.istat.it/sessions/paper/21Daas.pdf (accessed May 6, 2015).

  • Daas, P. and T. Fonville. 2007. Quality Control of Dutch Administrative Registers: An Inventory of Quality Aspects. Presented at the seminar on Registers in Statistics- Methodology and Quality, 21-23 May, 2007, Helsinki. Available at: http://www.oecd.org/std/38883259.pdf (accessed May 6, 2015).

  • Daas, P., S. Ossen, R. Vis-Visschers, and J. Arends-To´th. 2009. “Checklist for the Quality Evaluation of Administrative Data Sources.” Discussion Paper No. 09042, Statistics Netherlands. Available at: http://www.cbs.nl/nr/rdonlyres/0dbc2574-cdae-4a6d-a68a-88458cf05fb2/0/200942x10pub.pdf (accessed May 6, 2015).

  • Daas, P.J., S.J. Ossen, M. Tennekes, and E.S. Nordholt. 2012. “Evaluation of the Quality of Administrative Data used in the Dutch Virtual Census.” In Proceedings of JSM 2012, Survey Statistics Section, July 28-August 2, 2012. 1462-1472. Alexandria, VA: American Statistical Association.

  • European Commission. 2010. “Commission Regulation (EU) No 1151/2010.” Official Journal of the European Union 53 L 324: 1-10. Available at: http://eurlex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010R1151&from=EN (accessed May 6, 2015).

  • Eurostat. 2003. “Quality Assessment of Administrative Data for Statistical Purposes.” Contribution for the Working Group “Assessment of Quality in Statistics”, October 2-3, 2003. Luxembourg. Available at: http://unstats.un.org/unsd/EconStatKB/Attachment323.aspx (accessed May 6, 2015).

  • Hendriks, C. 2012. “Input Data Quality in Register Based Statistics-the Norwegian Experience.” In Proceedings of JSM 2012, Survey Statistics Section, July 28-August 2, 2012. 1473-1480. Alexandria, VA: American Statistical Association.

  • Herzog, T.N., F.J. Scheuren, and W.E. Winkler. 2007. Data Quality and Record Linkage Techniques. New York: Springer.

  • Hui, G. and H.I. AlDarmaki. 2012. “Editing and Imputation of the 2011 Abu Dhabi Census”. Paper presented at the UNECE Work Session on Statistical Data Editing, Oslo, September 24-26, 2012. Available at: http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2012/44_Abu_Dhabi.pdf (accessed May 6, 2015).

  • Iwig, W., M. Berning, P. Marck, and M. Prell. 2013. Data Quality Assessment Tool for Administrative Data. Technical Report, Office of Survey Methods Research (OSMR). Available at: http://www.bls.gov/osmr/datatool.pdf (accessed April 30, 2015).

  • Kapteyn, A. and J. Ypma. 2007. “Measurement Error and Misclassification: A Comparison of Survey and Administrative Data.” Journal of Labor Economics 255: 513-551.

  • Karr, A., A. Sanil, and D. Banks. 2006. “Data Quality: A Statistical Perspective.” Statistical Methodology 3: 137-173. Doi: http://dx.doi.org/10.1016/j.stamet.2005.08.005.

  • Kausl, A. 2012. “The Data Imputation Process of the Austrian Register-Based Census.” Paper presented at the UNECE Work Session on Statistical Data Editing, Oslo, September 24-26, 2012. Available at: http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2012/41_Austria_Kausl.pdf (accessed May 6, 2015).

  • Laitila, T., A. Wallgren, and B. Wallgren. 2011. Quality Assessment of Administrative Data. Research and Development-Methodology Reports from Statistics Sweden, 2011:2, Statistics Sweden. Available at: http://www.scb.se/statistik/_publikationer/OV9999_2011A01_BR_X103BR1102.pdf (accessed May 6, 2015).

  • Lanzieri, G. 2009. A Quantitative Approach to the European Union Census Quality Reporting. Note by the Statistical Office of the European Communities. Available at: http://www.academia.edu/2565773/A_quantitative_approach_to_the_European_Union_census_quality_reporting (accessed April 30, 2015).

  • Lenk, M. 2008. Methods of Register-based Census in Austria. Technical Report, Statistik Austria, Vienna. Available at: http://www.statistik.at/web_de/static/methods_of_register-based_census_in_austria_055160.pdf (accessed May 6, 2015).

  • Little, R.J.A. and D.B. Rubin. 2002. Statistical analysis with missing data. New York: Wiley.

  • Pipino, L.L., Y.W. Lee, and R.Y. Wang. 2002. “Data Quality Assessment.” Communications of the ACM 45: 211-218.

  • Roth, P.L. 1994. “Missing data: A Conceptual Review for Applied Psychologists.” Personnel Psychology 47: 537-560. Doi: http://dx.doi.org/10.1111/j.1744-6570.1994.tb01736.x.

  • UNECE. 2007. Register Based Statistics in the Nordic Countries. Review on Best Practices with Focus on Population and Social Statistics. Technical Report, United Nations Economic Commission for Europe. Available at: http://unstats.un.org/unsd/dnss/docViewer.aspx?docID=2764 (accessed May 6, 2015).

  • UNECE. 2014. Measuring Population and Housing-Practices of UNECE Countries in the 2010 Round of Censuses. Technical Report, United Nations Economic Commission for Europe. Available at: http://www.unece.org/fileadmin/DAM/stats/publications/2013/Measuring_population_and_housing_2010.pdf (accessed May 6, 2015).

  • UNECE and EUROSTAT. 2006. Conference of European Statisticians Recommendations for the 2010 Censuses Of Population and Housing. Technical Report, United Nations Economic Commission for Europe. Available at: http://www.unece.org/fileadmin/DAM/stats/publications/CES_2010_Census_Recommendations_English.pdf (accessed May 6, 2015).

  • Wallgren, A. and B. Wallgren. 2007. Register-Based Statistics. New York: Wiley.

  • Zhang, L.-C. 2011. “A Unit-Error Theory for Register-Based Household Statistics.” Journal of Official Statistics 27: 415-432.

  • Zhang, L.-C. 2012. “Topics of Statistical Theory for Register-Based Statistics and Data Integration.” Statistica Neerlandica 66: 41-63. Doi: http://dx.doi.org/10.1111/j.1467-9574.2011.00508.x.

OPEN ACCESS

Journal + Issues

Search