Variance Estimation of Change in Poverty Rates: an Application to the Turkish EU-SILC Survey

Open access

Abstract

Interpreting changes between point estimates at different waves may be misleading if we do not take the sampling variation into account. It is therefore necessary to estimate the standard error of these changes in order to judge whether or not the observed changes are statistically significant. This involves the estimation of temporal correlations between cross-sectional estimates, because correlations play an important role in estimating the variance of a change in the cross-sectional estimates. Standard estimators for correlations cannot be used because of the rotation used in most panel surveys, such as the European Union Statistics on Income and Living Conditions (EU-SILC) surveys. Furthermore, as poverty indicators are complex functions of the data, they require special treatment when estimating their variance. For example, poverty rates depend on poverty thresholds which are estimated from medians. We propose using a multivariate linear regression approach to estimate correlations by taking into account the variability of the poverty threshold. We apply the approach proposed to the Turkish EU-SILC survey data.

Atkinson, A.B. and E. Marlier. 2010. “Income and Living Conditions in Europe.” Publications Office of the European Union, Luxembourg. Available at: http://ec.europa.eu/eurostat/documents/3217494/5722557/KS-31-10-555-EN.PDF/e8c0a679-be01-461ca08b-7eb08a272767 (accessed April 30, 2015).

Berger, Y.G. 2004. “Variance Estimation for Measures of Change in Probability Sampling.” Canadian Journal of Statistics 32: 451-467. DOI: http://dx.doi.org/10.2307/3316027.

Berger, Y.G. 2008. “A Note on the Asymptotic Equivalence of Jackknife and Linearization Variance Estimation for the Gini Coefficient.” Journal of Official Statistics 24: 541-555.

Berger, Y.G., T. Goedemé, and G. Osier. 2013. Handbook on Standard Error Estimation and Other Related Sampling Issues in EU-SILC Second Network for the Analysis of EU-SILC, EuroStat. Available at: http://www.cros-portal.eu/content/handbook-standard-error-estimation-and-other-related-sampling-issues-ver-29072013 (accessed February 6, 2013).

Berger, Y.G. and R. Priam. 2010. “Estimation of Correlations between Cross-Sectional Estimates from Repeated Surveys - an Application to the Variance of Change.” In Proceedings of the 2010 Symposium of Statistics Canada, [26-29 October, 2010]. [10 pp.].

Berger, Y.G. and R. Priam. 2015. A Simple Variance Estimator of Change for Rotating Repeated Surveys: an Application to the EU-SILC Household Surveys. Journal of the Royal Statistical Society, Series A (Statistics in Society). Available at: DOI: http://dx.doi.org/10.1111/rssa.12116.22 pp. (accessed June 9, 2015).

Berger, Y.G. and C.J. Skinner. 2003. “Variance Estimation of a Low-Income Proportion.” Journal of the Royal Statistical Society, Series C (Applied Statistics) 52: 457-468. DOI: http://dx.doi.org/10.1111/1467-9876.00417.

Betti, G. and F. Gagliardi. 2007. “Jackknife Variance Estimation of Differences and Averages of Poverty Measures.” Working Paper 68, Siena: Dipartimento di Metodi Quantitativi, Universita` degli Studi.

Chao, M.T. 1982. “A General Purpose Unequal Probability Sampling Plan.” Biometrika 69: 653-656. DOI: http://dx.doi.org/10.1093/biomet/69.3.653.

Christine, M. and T. Rocher. 2012. “Construction d’échantillons astreints a´ des conditions de recouvrement par rapport un échantillon antérieur et a´ des conditions d’équilibrage par rapport a´ des variables courantes.” Proceedings of the 10th Journée de Méthodologie Statistique de l’INSEE, January 24-26, 2012. [41 pp.]. Paris.

Demnati, A. and J.N.K. Rao. 2004. “Linearization Variance Estimators for Survey Data.” Survey Methodology 30: 17-26.

Deville, J.C. 1999. “Variance Estimation for Complex Statistics and Estimators: Linearization and Residual Techniques.” Survey Methodology 25: 193-203.

Di Meglio, E., G. Osier, T. Goedemé, Y. G. Berger, and E. Di Falco. 2013. “Standard Error Estimation in EU-SILC - First Results of the Net-SILC2 Project.” In Proceedings of the Conference on New Techniques and Technologies for Statistics, [March 5-7, 2013]. [10 pp.]. Brussels. Available at: http://www.crosportal.eu/sites/default/files//NTTS2013%20Proceedings_0.pdf (last accessed April 30, 2015).

Eurostat. 2003. “‘Laeken’ Indicators-Detailed Calculation Methodology.” Available at: http://www.cso.ie/en/media/csoie/eusilc/documents/Laeken%20Indicators%20-%20calculation%20algorithm.pdf (accessed February 4, 2014).

Eurostat. 2012. “European Union Statistics on Income and Living Conditions (EU-SILC).” Available at: http://epp.eurostat.ec.europa.eu/portal/page/portal/microdata/eusilc (accessed January 7, 2013).

Feiveson, A.H. 2002. “Power by simulation.” The STATA Journal 2: 107-124.

Gambino, J.G. and P.L.N. Silva. 2009. “Sampling and Estimation in Household Surveys.” In Handbook of Statistics, 29A: Design, Method and Applications, edited by D. Pfeffermann and C.R. Rao, 407-439. Amsterdam: Elsevier.

Goedemé, T. 2010. “The Standard Error of Estimates Based on EU-SILC. An Exploration through the Europe 2020 Poverty Indicators.” Working paper 10/09, [Herman Deleeck Centre for Social Policy, University of Antwerp, Belgium]. Available at: http://www.centrumvoorsociaalbeleid.be/index.php?q=node/2204/en (accessed April 30, 2015).

Graf, E. 2013. “Variance Estimation by Linearization for Indicators of Poverty and Social Exclusion in a Person and Household Survey Context.” Paper presented at New Techniques and Technologies for Statistics, Brussels. Available at: http://www.cros-portal.eu/content/14a01ericgraf (last accessed February 5, 2014).

Graf, E. and Y. Tillé. 2014. “Variance Estimation Using Linearization for Poverty and Social Exclusion Indicators.” Survey Methodology 40: 61-79.

Hansen, M.H. and W.N. Hurwitz. 1943. “On the Theory of Sampling from Finite Populations.” The Annals of Mathematical Statistics 14: 333-362.

Holmes, D.J. and C.J. Skinner. 2000. “Variance Estimation for Labour Force Survey Estimates of Level and Change.” The Office for National Statistics, London, United Kingdom. Government Statistical Service Methodology Series 21, 40 pp.

Horvitz, D.G. and D.J. Thompson. 1952. “A Generalization of Sampling Without Replacement From a Finite Universe.” Journal of the American Statistical Association 47: 663-685. DOI: http://dx.doi.org/10.1080/01621459.1952.10483446.

Kalton, G. 2009. “Design for Surveys over Time.” In Handbook of Statistics, 29A: Design, Method and Applications, edited by D. Pfeffermann and C.R Rao, 89-108. Amsterdam: Elsevier.

Kish, L. 1965. Survey Sampling. New York: John Wiley and Sons.

Laniel, N. 1987. “Variances for a Rotating Sample from a Changing Population.” In Proceedings of the Survey Research Methods Section, American Statistical Association, [August 17-20, 1987]. 496-500. Alexandria, VA: American Statistical Association.

McDonald, J.B. 1984. “Some Generalized Functions for the Size Distribution of Income.” Econometrica 52: 647-664.

Muennich, R. and S. Zins. 2011. “Variance Estimation for Indicators of Poverty and Social Exclusion.” Work package of the European project on Advanced Methodology for European Laeken Indicators (AMELI). Available at: http://www.uni-trier.de/index.php?id=24676 (accessed January 4, 2013).

Nordberg, L. 2000. “On Variance Estimation for Measures of Change when Samples Are Coordinated by the Use of Permanent Random Numbers.” Journal of Official Statistics 16: 363-378.

Osier, G. 2009. “Variance Estimation for Complex Indicators of Poverty and Inequality Using Linearization Techniques.” Survey Research Methods 3: 167-195.

Osier, G., Y.G. Berger, and T. Goedemé. 2013. “Standard Error Estimation for the EU-SILC Indicators of Poverty and Social Exclusion.” Eurostat Methodologies and Working Papers series. Publications Office of the European Union, Luxembourg. Available at: http://ec.europa.eu/eurostat/documents/3888793/5855973/KS-RA-13-024-EN.PDF (accessed April 30, 2015).

Preston, I. 1995. “Sampling Distributions of Relative Poverty Statistics.” Applied Statistics 44: 91-99.

Qualité, L. and Y. Tillé. 2008. “Variance Estimation of Changes in Repeated Surveys and its Application to the Swiss Survey of Value Added.” Survey Methodology 34: 173-181.

Salem, A.B.Z. and T.D. Mount. 1974. “A Convenient Descriptive Model of Income Distribution: The Gamma Density.” Econometrica 42: 1115-1127.

Schmeiser, B.W. and R. Lal. 1982. “Bivariate Gamma Random Vectors.” Operations Research 30: 355-374. DOI: http://dx.doi.org/10.1287/opre.30.2.355.

Silverman, B.W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.

Tam, S.M. 1984. “On Covariances from Overlapping Samples.” American Statistician 38: 288-289. DOI: http://dx.doi.org/10.1080/00031305.1984.10483227.

Verma, V. and G. Betti. 2005. “Sampling Errors and Design Effects for Poverty Measures and Other Complex Statistics.” Working Paper 53, Siena: Dipartimento di Metodi Quantitativi, Universita` degli Studi.

Verma, V. and G. Betti. 2011. “Taylor Linearisation Sampling Errors and Design Effects for Poverty Measures and Other Complex Statistics.” Journal of Applied Statistics 38: 1549-1576. DOI: http://dx.doi.org/10.1080/02664763.2010.515674.

Wood, J. 2008. “On the Covariance Between Related Horvitz-Thompson Estimators.” Journal of Official Statistics 24: 53-78.

Journal of Official Statistics

The Journal of Statistics Sweden

Journal Information


IMPACT FACTOR 2017: 0.662
5-year IMPACT FACTOR: 1.113

CiteScore 2017: 0.74

SCImago Journal Rank (SJR) 2017: 1.158
Source Normalized Impact per Paper (SNIP) 2017: 0.860

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 127 127 19
PDF Downloads 55 55 12