On Estimating Quantiles Using Auxiliary Information

Open access


We propose a transformation-based approach for estimating quantiles using auxiliary information. The proposed estimators can be easily implemented using a regression estimator. We show that the proposed estimators are consistent and asymptotically unbiased. The main advantage of the proposed estimators is their simplicity. Despite the fact the proposed estimators are not necessarily more efficient than their competitors, they offer a good compromise between accuracy and simplicity. They can be used under single and multistage sampling designs with unequal selection probabilities. A simulation study supports our finding and shows that the proposed estimators are robust and of an acceptable accuracy compared to alternative estimators, which can be more computationally intensive.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bahadur R.R. 1966. “A Note on Quantiles in Large Samples.” The Annals of Mathematical Statistics 37: 577-580.

  • Berger Y.G. and C.J. Skinner. 2003. “Variance Estimation of a Low-Income Proportion.” Journal of the Royal Statistical Society Series C 52: 457-468. DOI: http://dx.doi.org/ 10.1111/1467-9876.00417.

  • Berger Y.G. and O. De la Riva Torres. 2015. “An Empirical Likelihood Approach for Inference Under Complex Sampling Design. To Appear in Journal of Royal Statistical Society Senes B 22p.”.

  • Cassel C.M. C.-E. Särndal and J.H. Wretman. 1976. “Some Results on Generalized Difference Estimation and Generalized Regression Estimation for Finite Populations.” Biometrika 63: 615-620. DOI: http://dx.doi.org/10.1093/biomet/63.3.615.

  • Cassel C.M. C.-E. Särndal and J.H. Wretman. 1977. Foundation of Inference in Survey Sampling. New York: Wiley.

  • Chambers R.L. and R. Dunstan. 1986. “Estimating Distribution Functions From Survey Data.” Biometrika 73: 597-604. DOI: http://dx.doi.org/10.1093/biomet/73.3.597.

  • Chaudhuri S. M.S. Handcock and M.S. Rendall. 2008. “Generalized Linear Models Incorporating Population Level Information: An Empirical-Likelihood-Based Approach.” Journal of the Royal Statistical Society - Series B (Statistical Methodology) 70: 311-328. DOI: http://dx.doi.org/10.1111/j.1467-9868.2007.00637.x.

  • Chen J. and C. Wu. 2002. “Estimation of Distribution Function and Quantiles Using Model-Calibrated Pseudo Empirical Likelihood Method.” Statistica Sinica 12: 1223-1239.

  • Deville J.C. and C.-E. Särndal. 1992. “Calibration Estimators in Survey Sampling.” Journal of the American Statistical Association 87: 376-382. DOI: http://dx.doi.org/ 10.1080/01621459.1992.10475217.

  • Dorfman A.H. 2009. “Inference on Distribution Functions and Quantiles.” In Handbook of Statistics 29B Sample Surveys: Inference and Analysis edited by D. Pfeffermann and C.R. Rao pp. 371-395. Amsterdam North-Holland: Elsevier.

  • Eurostat. 2003. “Laeken” Indicators-Detailed Calculation Methodology Directorate E: Social Statistics Unit E-2: Living Conditions DOC.E2/IPSE/2003. Available at: http://www.cso.ie/en/media/csoie/eusilc/documents/Laeken%20Indicators%20- %20calculation%20algorithm.pdf.

  • Eurostat. 2012. European Union Statistics on Income and Living Conditions (EU-SILC).

  • Available at: http://epp.eurostat.ec.europa.eu/portal/page/portal/microdata/eu_silc.

  • Francisco C.A. and W.A. Fuller. 1991. “Quantile Estimation With a Complex Survey Design.” Annals of Statistics 19: 454-469.

  • Hájek J. 1971. Comment on a paper by D. Basu. In Foundations of Statistical Inference edited by V.P. Godambe and D.A. Sprott. Toronto: Holt Rinehart and Winston.

  • Hansen M.H. W.G. Madow and B.J. Tepping. 1983. “An Evaluation of Model- Dependent and Probability-Sampling Inferences in Sample Surveys.” Journal of the American Statistical Association 78: 776-793. DOI: http://dx.doi.org/10.1080/ 01621459.1983.10477018.

  • 118 Journal of Official Statistics Harms T. and P. Duchesne. 2006. “On Calibration Estimation for Quantiles.” Survey Methodology 32: 37-52.

  • Huang E.T. and W.A. Fuller. 1978. “Nonnegative Regression Estimation for Survey Data.” In Procceding of the Social Statistics Section of the American Statistical Association Washington DC 300-303.

  • Isaki C.T. and W.A. Fuller. 1982. “Survey Design Under the Regression Superpopulation Model.” Journal of the American Statistical Association 77: 89-96. DOI: http://dx.doi.

  • org/10.1080/01621459.1982.10477770.

  • Lehmann E.L. 1999. Elements of Large-Sample Theory. New York: Springer-Verlag.

  • Lesage E. 2011. “The Use of Estimating Equations to Perform a Calibration on Complex Parameters.” Survey Methodology 37: 103-108.

  • Nygård F. and A. Sandström. 1985. “The Estimation of the Gini and the Entropy Inequality Parameters in Finite Populations.” Journal of Official Statistics 4: 399-412.

  • Osier G. 2009. “Variance Estimation for Complex Indicators of Poverty and Inequality Using Linearization Techniques.” Journal of the European Survey Research Association 3: 167-195.

  • Owen A.B. 1991. “Empirical Likelihood for Linear Models.” The Annals of Statistics 19: 1725-1747.

  • Rao J.N.K. J.G. Kovar and H.J. Mantel. 1990. “On Estimating Distribution Functions and Quantiles From Survey Data Using Auxiliary Information.” Biometrika 77: 365-375. DOI: http://dx.doi.org/10.1093/biomet/77.2.365.

  • Rao J.N.K. and C.F.J. Wu. 1988. “Resampling Inference with Complex Survey Data.” Journal of the American Statistical Association 83: 231-241. DOI: http://dx.doi.org/ 10.1080/01621459.1988.10478591.

  • Rao J.N.K. C.F.J. Wu and K. Yue. 1992. “Some Recent Work on Resampling Methods for Complex Surveys.” Survey Methodology 18: 209-217.

  • Robinson P.M. and C.-E. Särndal. 1983. “Asymptotic Properties of the Generalized Regression Estimator in Probability Sampling.” Sankhya B 45: 240-248.

  • Särndal C.-E. B. Swensson and J.H. Wretman. 1992. Model Assisted Survey Sampling. New York: Springer Verlag.

  • Serfling N. 1980. Approximation Theorems of Mathematical Statistics. New York: Wiley.

  • Silva P.L.D. Nascimento and C.J. Skinner. 1995. “Estimating Distribution Functions With Auxiliary Information Using Poststratification.” Journal of Official Statistics 11: 277-294.

  • Verma V. and G. Betti. 2011. “Taylor Linearization Sampling Errors and Design Effects for Poverty Measures and Other Complex Statistics.” Journal of Applied Statistics 38: 1549-1576. DOI: http://dx.doi.org/10.1080/02664763.2010.515674.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,837
5-year IMPACT FACTOR: 0,934

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.963
Source Normalized Impact per Paper (SNIP) 2018: 1.020

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 353 249 5
PDF Downloads 221 156 7