Urinary Proteome Analysis using Capillary Electrophoresis Coupled to Mass Spectrometry: A Powerful Tool in Clinical Diagnosis, Prognosis and Therapy Evaluation

Open access

Urinary Proteome Analysis using Capillary Electrophoresis Coupled to Mass Spectrometry: A Powerful Tool in Clinical Diagnosis, Prognosis and Therapy Evaluation

Proteome analysis has emerged as a powerful tool to decipher (patho) physiological processes, resulting in the establishment of the field of clinical proteomics. One of the main goals is to discover biomarkers for diseases from tissues and body fluids. Due to the enormous complexity of the proteome, a separation step is required for mass spectrometry (MS)-based proteome analysis. In this review, the advantages and limitations of protein separation by two-dimensional gel electrophoresis, liquid chromatography, surface-enhanced laser desorption/ionization and capillary electrophoresis (CE) for proteomic analysis are described, focusing on CE-MS. CE-MS enables separation and detection of the small molecular weight proteome in biological fluids with high reproducibility and accuracy in one single processing step and in a short time. As sensitive and specific single biomarkers generally may not exist, a strategy to overcome this diagnostic void is shifting from single analyte detection to simultaneous analysis of multiple analytes that together form a disease-specific pattern. Such approaches, however, are accompanied with additional challenges, which we will outline in this review. Besides the choice of adequate technological platforms, a high level of standardization of proteomic measurements and data processing is also necessary to establish proteomic profiling. In this regard, demands concerning study design, choice of specimens, sample preparation, proteomic data mining, and clinical evaluation should be considered before performing a proteomic study.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anderson NG Anderson NL Tollaksen SL. Proteins of human urine. I. Concentration and analysis by two-dimesional electrophoresis. Clin Chem 1979; 25: 1199-210.

  • Argiles A Mourad G Mion C Atkins RC Haiech J. Two-dimensional gel electrophoresis of urinary proteins in kidney diseases. Contrib Nephrol 1990; 83: 1-8.

  • Mischak H Apweiler R Banks RE Conaway M Coon JJ Dominizak A et al. Clinical Proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl 2007; 1: 148-56.

  • Coon JJ Zürbig P Dakna M Dominiczak AF Decramer S Fliser D et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics Clin Appl 2008; 2: 964-73.

  • Castronovo V Kischel P Guillonneau F De LL Defechereux T De PE et al. Identification of specific reachable molecular targets in human breast cancer using a versatile ex vivo proteomic method. Proteomics 2007; 7: 1188-96.

  • Roessler M Rollinger W Mantovani-Endl L Hagmann ML Palme S Berndt P et al. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electro-phoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics 2006; 5: 2092-101.

  • Lescuyer P Hochstrasser D Rabilloud T. How Shall We Use the Proteomics Toolbox for Biomarker Discovery? J Proteome Res 2007; 6: 3371-6.

  • Omenn GS States DJ Adamski M Blackwell TW Menon R Hermjakob H et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005; 5: 3226-45.

  • Rai AJ Gelfand CA Haywood BC Warunek DJ Yi J Schuchard MD et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005; 5: 3262-77.

  • Anderson NL Anderson NG. The human plasma proteome: history character and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845-67.

  • Kolch W Neususs C Pelzing M Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 2005; 24: 959-77.

  • Schaub S Wilkins J Weiler T Sangster K Rush D Nickerson P. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 2004; 65: 323-32.

  • Righetti PG Campostrini N Pascali J Hamdan M Astner H. Quantitative proteomics: a review of different methodologies. Eur J Mass Spectrom (Chichester Eng) 2004; 10: 335-48.

  • Zybailov B Coleman MK Florens L Washburn MP. Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 2005; 77: 6218-24.

  • Barnidge DR Dratz EA Martin T Bonilla LE Moran LB Lindall A. Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal Chem 2003; 75: 445-51.

  • DeKeyser SS Li L. Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry quantitation via in cell combination. Analyst 2006; 131: 281-90.

  • Jantos-Siwy J Schiffer E Brand K Schumann G Rossing K Delles C et al. Quantitative Urinary Proteome Analysis for Biomarker Evaluation in Chronic Kidney Disease. J Proteome Res 2009; 8: 268-81.

  • Shannon W Culverhouse R Duncan J. Analyzing microarray data using cluster analysis. Pharmacogenomics 2003; 4: 41-52.

  • Smola AJ Scholkopf B. A tutorial on support vector regression. Statistics and Computing 2004; 14: 199-222.

  • Abdi H. Bonferroni and Sidak corrections for multiple comparisons. Thousand Oaks (CA): Sage 2007.

  • Westfall PH Young SS. Resampling-based Multiple Testing: Examples and Methods for P-Value Adjustment. New York: Wiley 1993.

  • Benjamini Y Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B (Methodological) 1995; 57: 125-33.

  • Zweig MH Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-77.

  • Jaattela M. Escaping cell death: survival proteins in cancer. Exp Cell Res 1999; 248: 30-43.

  • Helmbrecht K Zeise E Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2000; 33: 341-65.

  • Jolly C Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000; 92: 1564-72.

  • Lindquist S Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22: 631-77.

  • O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250: 4007-21.

  • Burnette WN. »Western blotting«: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1981; 112: 195-203.

  • Aebersold R Goodlett DR. Mass spectrometry in proteomics. Chem Rev 2001; 101: 269-95.

  • Kozarova A Petrinac S Ali A Hudson JW. Array of informatics: Applications in modern research. J Proteome Res 2006; 5: 1051-9.

  • Fliser D Novak J Thongboonkerd V Argiles A Jankowski V Girolami M et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 2007; 18: 1057-71.

  • Wu TL. Two-dimensional difference gel electrophoresis. Methods Mol Biol 2006; 328: 71-95.

  • Thongboonkerd V. Recent progress in urinary proteomics. Proteomics Clin Appl 2007; 1: 780-91.

  • Delahunty CM Yates JR III. MudPIT: multidimensional protein identification technology. Biotechniques 2007; 43: 563 565 567.

  • McLerran D Grizzle WE Feng Z Thompson IM Bigbee WL Cazares LH et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin Chem 2008; 54: 53-60.

  • Gaspar A Englmann M Fekete A Harir M Schmitt-Kopplin P. Trends in CE-MS 2005-2006. Electrophoresis 2008; 29: 66-79.

  • Mischak H Julian BA Novak J. High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin Appl 2007; 1: 792-804.

  • Good DM Thongboonkerd V Novak J Bascands JL Schanstra JP Coon JJ et al. Body Fluid Proteomics for Biomarker Discovery: Lessons from the Past Hold the Key to Success in the Future. J Proteome Res 2007; 6: 4549-55.

  • Wa C Cerny RL Clarke WA Hage DS. Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta 2007; 385: 48-60.

  • Haubitz M Fliser D Rupprecht H Floege J Haller H Rossing K et al. Defining renal diseases based on proteome analysis. Nephrology Dialysis Transplantation 2005; 20: V20.

  • Villanueva J Shaffer DR Philip J Chaparro CA Erdjument-Bromage H Olshen AB et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 2006; 116: 271-84.

  • Rossing K Mischak H Rossing P Schanstra JP Wiseman A Maahs DM. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin Appl 2008; 2: 997-1007.

  • Goodsaid F Bandow JE Mischak H. Grand Rounds in Proteomics at the FDA. Proteomics Clin Appl 2007; 1: 1526-31.

  • Hernandez J Thompson IM. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 2004; 101: 894-904.

  • Mogensen CE. Systemic blood pressure and glomerular leakage with particular reference to diabetes and hypertension. J Intern Med 1994; 235: 297-316.

  • Rossing K. Progression and remission of nephropathy in type 2 diabetes: new strategies of treatment and monitoring. Dan Med Bull 2007; 54: 79-98.

  • Neuhoff N Kaiser T Wittke S Krebs R Pitt A Burchard A et al. Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Communications in Mass Spectrometry 2004; 18: 149-56.

  • Mischak H Kaiser T Walden M Hillmann M Wittke S Herrmann A et al. Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond) 2004; 107: 485-95.

  • Meier M Kaiser T Herrmann A Knueppel S Hillmann M Koester P et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. J Diabetes Complications 2005; 19: 223-32.

  • Rossing K Mischak H Parving HH Christensen PK Walden M Hillmann M Kaiser T. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int 2005; 68: 193-205.

  • Rossing K Mischak H Dakna M Zürbig P Novak J Julian BA et al. Urinary Proteomics in Diabetes and CKD. J Am Soc Nephrol 2008; 19: 1283-90.

  • Decramer S Wittke S Mischak H Zürbig P Walden M Bouissou F et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med 2006; 12: 398-400.

  • Decramer S Bascands JL Schanstra JP. Non-invasive markers of ureteropelvic junction obstruction. World J Urol 2007; 25: 457-65.

  • Theodorescu D Wittke S Ross MM Walden M Conaway M Just I et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol 2006; 7: 230-40.

  • Theodorescu D Schiffer E Bauer HW Douwes F Eichhorn F Polley R et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl 2008; 2: 556-70.

  • Kaiser T Kamal H Rank A Kolb HJ Holler E Ganser A et al. Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood 2004; 104: 340-9.

  • Weissinger EM Hertenstein B Mischak H Ganser A. Online coupling of capillary electrophoresis with mass spectrometry for the identification of biomarkers for clinical diagnosis. Expert Rev Proteomics 2005; 2: 639-47.

  • Weissinger EM Schiffer E Hertenstein B Ferrara JL Holler E Stadler M et al. Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 2007; 109: 5511-9.

  • Zimmerli LU Schiffer E Zürbig P Kellmann M Mouls L Pitt A et al. Urinary proteomics biomarkers in coronary artery disease. Mol Cell Proteomics 2008; 7: 290-8.

  • Von Zur Muhlen C Schiffer E Zuerbig P Kellmann M Brasse M Meert N et al. Evaluation of Urine Proteome Pattern Analysis for Its Potential To Reflect Coronary Artery Atherosclerosis in Symptomatic Patients. J Proteome Res 2009; 8: 335-45.

  • Snell-Bergeon JK Maahs DM Ogden LG Kinney GL Hokanson JE Schiffer E et al. Evaluation of urinary biomarkers for coronary artery disease diabetes and diabetic kidney disease. Diabetes Technol Ther 2009; 11: 1-9.

  • Comper WD Osicka TM Clark M MacIsaac RJ Jerums G. Earlier detection of microalbuminuria in diabetic patients using a new urinary albumin assay. Kidney Int 2004; 65: 1850-5.

  • Haubitz M Wittke S Weissinger EM Walden M Rupprecht HD Floege J et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 2005; 67: 2313-20.

  • Rossing K Mischak H Dakna M Zurbig P Novak J Julian BA et al. Proteomic discovery and validation of urinary biomarkers for diabetes and chronic renal disease. J Am Soc Nephrol 2008; 19: 1283-90.

  • Weissinger EM Wittke S Kaiser T Haller H Bartel S Krebs R et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int 2004; 65: 2426-34.

  • Nemirovskiy OV Dufield DR Sunyer T Aggarwal P Welsch DJ Mathews WR. Discovery and development of a type II collagen neoepitope (TIINE) biomarker for matrix metalloproteinase activity: From in vitro to in vivo. Anal Biochem 2006; 361: 93-101.

  • Candiano G Musante L Bruschi M Petretto A Santucci L Del BP et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol 2006; 17: 3139-48.

  • Frommberger M Zürbig P Jantos J Krahn T Mischak M Pich A et al. Peptidomic analysis of rat urine using capillary electrophoresis coupled to mass spectrometry. Proteomics Clin Appl 2007; 1: 650-60.

Journal information
Impact Factor

IMPACT FACTOR 2018: 2.000
5-year IMPACT FACTOR: 1.075

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.523
Source Normalized Impact per Paper (SNIP) 2018: 0.581

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 136 1
PDF Downloads 106 78 4