Formation of „koon” systems reliability estimated with analytical and simulation calculation methods

Open access


The methods of reliability estimation applied in order to verify the reliability level of koon systems consisting of renewable objects are presented in the paper. Application of the selected methods allows one to quickly verify the reliability level and to set the number of redundant elements in the real technical systems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Johnson Paul E.: Monte Carlo Analysis in Academic Research. The Oxford Handbook of Quantitative Methods in Psychology Vol. 1. 2013.

  • [2] Manzini R. Regattieri A. Pham H. Ferrari E.: Maintenance for Industrial Systems. Springer-VerlagGmbh. 2010.

  • [3] Młynarski S. Oprzędkiewicz J.: Systemowe rozwiązania zapewnienia bezpieczeństwa i niezawodności obiektów technicznych. Problemy Eksploatacji. Maint. Problems. 2012; 3: 39-54.

  • [4] Młynarski S. Pilch R. Smolnik M. Szkoda M. Szybka J.: Evaluation of the Safety Integrity Level (SIL) Due to the Guidelines of EN 61508 and with the Use of Markov Processes. Journal of KONBiN. 2015; 3: 73-84.

  • [5] Młynarski S. Pilch R. Smolnik M. Szybka J.: Kształtowanie układów technicznych w aspekcie zapewnienia ich niezawodnego i bezpiecznego funkcjonowania. Logistyka. 2015; 6: 1210-1218.

  • [6] Pilch R.: A method for obtaining the required system reliability level by applying preventive maintenance. Simulation. 2015; 97 (7): 615-624.

  • [7] Pilch R.: Extending the Possibilities of Quantitative Determination of SIL – a Procedure Based on IEC 61508 and the Markov Model with Common Cause Failures. Qual. Reliab. Engng. Int. 2017; 33: 337-346.

  • [8] Szybka J.: Methodology for reliability estimation of system with sliding reserve. Scientific problems of machines operation and maintenance. 2010; 45 (163): 65-73.

  • [9] System Analysis Reference. Reliability Availability & Optimization. BlockSim 7. Reliasoft Corporation. Tucson AZ. USA. 1999-2007.

Journal information
Impact Factor

CiteScore 2018: 0.33

SCImago Journal Rank (SJR) 2018: 0.21
Source Normalized Impact per Paper (SNIP) 2018: 0.434

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 90 3
PDF Downloads 102 73 1