Stochastic Modelling Of The Repairable System

Open access


All reliability models consisting of random time factors form stochastic processes. In this paper we recall the definitions of the most common point processes which are used for modelling of repairable systems. Particularly this paper presents stochastic processes as examples of reliability systems for the support of the maintenance related decisions. We consider the simplest one-unit system with a negligible repair or replacement time, i.e., the unit is operating and is repaired or replaced at failure, where the time required for repair and replacement is negligible. When the repair or replacement is completed, the unit becomes as good as new and resumes operation. The stochastic modelling of recoverable systems constitutes an excellent method of supporting maintenance related decision-making processes and enables their more rational use.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Abdel-Hameed M.: Life distribution properties of devices subject to a pure jump damage process. Journal of Applied Probability 21/1984 816–825.

  • [2] Andrzejczak K.: Metody prognozowania w modelowaniu eksploatacji środków transportu. Poznań 2013 Wydawnictwo Politechniki Poznańskiej.

  • [3] Ascher H. Feingold H.: Repairable Systems Reliability: Modeling Inference Misconceptions and their Causes. Marcel Decker New York 1984.

  • [4] Ascher H. Kobbacy K.: Modelling preventive maintenance for deteriorating repairable systems. IMA Journal of Mathematics Applied in Business & Industry 6 1995 pp. 85-99.

  • [5] Bobrowski D.: Modele i metody matematyczne teorii niezawodności w przykładach i zadaniach. 1985 Warszawa WNT.

  • [6] Grabski F.: Stochastyczny model bezpieczeństwa obiektu w procesie eksploatacji. Problemy Eksploatacji 1/2011 (80) 89-102.

  • [7] Grabski F. Jaźwiński J.: Funkcje o losowych argumentach w zagadnieniach niezawodności bezpieczeństwa i logistyki. 2009 Warszawa WKŁ.

  • [8] Grandell J (1976) Doubly stochastic Poisson process. Lecture notes in mathematics 529. Springer New York 1976.

  • [9] Jokiel-Rokita A. Magiera R.: (2010). Parameter estimation in non-homogeneous Poisson process models for software reliability. Technical report Wrocław University of Technology Institute of Mathematics and Computer Science.

  • [10] Kijima M.: Some results for repairable systems with general repair. Journal of Applied Probability 26(1)/1989 89–102.

  • [11] Kołowrocki K. Soszyńska-Budny J.: Reliability and safety of complex Technical Systems and Processes. Springer 2011 London.

  • [12] Nakagawa T.: Advanced reliability models and maintenance policies. Springer 2008 London.

  • [13] Nakagawa T.: Shock and damage models in reliability theory. Springer 2007 London.

  • [14] Nakagawa T.: Stochastic Processes with Applications to Reliability Theory. Springer 2011 London.

  • [15] Omdahl T.P. ed.: Reliability Availability and Maintainability (RAM) Dictionary ASQC Quality Press Milwaukee Wisconsin 1988.

  • [16] Osaki S. (eds): Stochastic models in reliability and maintenance. Springer 2002 Berlin.

  • [17] Popowska B. Andrzejczak K.: Funkcja przetrwania strumienia zagrożeń i jej aproksymacja. Maintenance Problems 80/2011 s. 149-155.

  • [18] Żurek J.: Modelowanie nadążnych systemów bezpieczeństwa. Warszawa Radom 2010 Wydawnictwo Naukowe ITE.

Journal information
Impact Factor

CiteScore 2018: 0.33

SCImago Journal Rank (SJR) 2018: 0.21
Source Normalized Impact per Paper (SNIP) 2018: 0.434

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 115 1
PDF Downloads 122 88 4