Characterization of Bacteria Isolated from the Saffron (Crocus sativus L.) Rhizosphere

Open access


One purpose of assessing the soil alive and active community is the identification of beneficial bacteria to use them as biological fertilizers, replacing or supplementing synthetic fertilizers. Such biofertilizers are predicted for the sustainability of agricultural production, especially for low input systems such as saffron fields. The aim of this work was to isolate and identify saffron rhizobacteria and to evaluate their possible effects on saffron growth. During 2013/14, some bacteria were isolated from the rhizosphere of the saffron plantations of different age in Gol village, Birjand, Iran. In total, 12 bacteria species were identified based on phenotypic traits and 16S rDNA sequences analysis. The strains were identified as B. subtilis, B. anthracis, B. cereus, B. megaterium, Bacillus sp., Paenibacillus, Pseudomonas fluorescens, P. putida, Escherichia coli, Pectobacterium sp. and Pantoea sp., with the dominant population belonging to the genus Bacillus. In the field study, inoculation of soil with these strains did not affect the leaf dry weight of the cultivated saffron, however, the strains of P. fluorescens increased the leaf area while P. fluorescens, Paenibacillus, Pectobacterium and B. megaterium increased the number of daughter corms and Azotobacter, B. cereus, B. subtilis and B. megaterium increased the corm weight. Our finding revealed that some bacteria present in the soil of perennial saffron plantations have a promising potential for developing as a plant growth promoting rhizobacteria.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alderton G. Thompson P.A. Snell N. 1964. Heat adaptation and ion exchange in Bacillus megaterium spores. Science 143(3602): 141–143. DOI: 10.1126/science.143.3602.141.

  • Ash C. Priest F.G. Collins M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash Farrow Wallbanks and Collins) using a PCR probe test Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64(3): 253–260. DOI: 10.1007/BF00873085.

  • Aytekin A. Acikgoz A.O. 2008. Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants. Molecules 13: 1135–1147. DOI: 10.3390/molecules13051135.

  • Chakraborty U. Chakraborty B. Basnet M. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology 46: 186–195. DOI: 10.1002/jobm.200510050.

  • Compant S. Duffy B. Nowak J. Clément C. Barka E.A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles mechanisms of action and future prospects. Applied and Environmental Microbiology 71(9): 4951–4959. DOI: 10.1128/AEM.71.9.4951-4959.2005.

  • Cooley M.B. Miller W.G. Mandrell R.E. 2003. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Applied and Environmental Microbiology 69(8): 4915–4926. DOI: 10.1128/AEM.69.8.4915-4926.2003.

  • Dellaporta S.L. Wood J. Hicks J.B. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1(4): 19–21. DOI: 10.1007/BF02712670.

  • Fiori M. Ligios V. Schiaffino A. 2011. Identification and characterization of Burkholderia isolates obtained from bacterial rot of saffron (Crocus sativus L.) grown in Italy. Phytopathologia Mediterranea 50: 450–461. DOI: 10.14601/Phytopathol_Mediterr-8730.

  • Govindasamy V. Senthilkumar M. Magheshwaran V. Kumar U. Bose P. Sharma V. Annapurna K. 2010. Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. In: Maheshwari D.K. (Ed.) Microbiology Monographs vol. 18. Plant Growth and Health Promoting Bacteria. Springer pp. 333–364. DOI: 10.1007/978-3-642-13612-2_15.

  • Huang J.W. Blaylock M.J. Kapulnik Y. Ensley B.D. 1998. Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science and Technology 32: 2004–2008. DOI: 10.1021/es971027u.

  • Ihsan S.A. Al-Mohammad M.H.S. Al-Thamir S.N.K. 2014. The influence of spermidine and biofertilizer application on the growth yield and some active constituents of saffron plant (Crocus sativus L.). Journal of Biology Agriculture and Healthcare 4(24): 131–135.

  • Kafi M. Hemmati Kakhki A. Karbasi A. 2006. Historical background economy acreage production yield and uses. In: Kafi M. Koocheki A. Rashed M.H. Nassiri M. (Eds.) Saffron (Crocus sativus): Production and Processing. Science Publishers USA pp. 1–11.

  • Kaymak H.C. Yarali F. Guvenc I. Figen Donmez M. 2008. The effect of inoculation with plant growth rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. African Journal of Biotechnology 7(24): 4479–4483.

  • Kloepper J.W. Leong J. Teintze M. Schroth M.N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776): 885–886. DOI: 10.1038/286885a0.

  • Kumar A. Prakash A. Johri B.N. 2011. Bacillus as PGPR in crop ecosystem. In: Maheshwari D.K. (Ed.) Bacteria in Agrobiology: Crop Ecosystems. Springer pp. 37–59. DOI: 10.1007/978-3-642-18357-7_2.

  • Kumar N.R. Arasu V.T. Gunasekaran P. 2002. Geno-typing of antifungal compounds producing plant growth-promoting rhizobacteria Pseudomonas fluorescens. Current Science 82(12): 1463–1466.

  • Lin Y.S. Ha I. Maldonado E. Reinberg D. Green M.R. 1991. Binding of general transcription factor TFIIB to an acidic activating region. Nature 353(6344): 569–571. DOI: 10.1038/353569a0.

  • van Loon L.C. 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology 119: 243–254. DOI: 10.1007/s10658-007-9165-1.

  • Lugtenberg B. Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63: 541–556. DOI: 10.1146/annurev.micro.62.081307.162918.

  • Luster J. Göttlein A. Nowack B. Sarret G. 2009. Sampling defining characterising and modeling the rhizosphere – the soil science tool box. Plant Soil 321: 457–482. DOI: 10.1007/s11104-008-9781-3.

  • Mandic-Mulec I. Prosser J.I. 2011. Diversity of endo-spore-forming bacteria in soil: characterization and driving mechanisms. In: Logan N.A. De Vos P. (Eds.) Soil Biology vol. 27. Endospore-Forming Soil Bacteria. Springer pp. 31–59. DOI: 10.1007/978-3-642-19577-8_2.

  • Mayak S. Tirosh T. Glick B.R. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42: 565–572. DOI: 10.1016/j.plaphy.2004.05.009.

  • Meziane H. Van der Sluis I. van Loon L.C. Höfte M. Bakker P.A.H.M. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology 6(2): 177–185. DOI: 10.1111/j.1364-3703.2005.00276.x.

  • Naghdi Badi H. Omidi H. Golzad A. Torabi H. Fotookian M.H. 2011. Change in crocin safranal and picrocrocin content and agronomical characters of saffron (Crocus sativus L.) under biological and chemical of phosphorous fertilizers. Iranian Journal of Medicinal Plants. 4(40): 58-68. [in Persian with English Summary].

  • Nakamura L.K. 1989. Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. International Journal of Systematic Bacteriology 39(3): 295–300. DOI: 10.1099/00207713-39-3-295.

  • Niu D.D. Liu H.X. Jiang C.H. Wang Y.P. Wang Q.Y. Jin H.L. Guo J.H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-Microbe Interactions 24(5): 533–542. DOI: 10.1094/MPMI-09-10-0213.

  • Omidi H. Naghdi Badi H. Golzad A. Torabi H. Footoukian M.H. 2009. The effect of chemical and bio-fertilizer source of nitrogen on qualitative and quantitative yield of saffron (Crocus sativus L.). Journal of Medicinal Plants 2(30): 98–109. [in Persian with English abstract]

  • Rai M.K. 2006. Handbook of Microbial Biofertilizers. CRC Press 579 p.

  • Rasouli Z. Maleki Farahani S. Besharati H. 2013. Some vegetative characteristics of saffron (Crocus sativus L.) as affected by various fertilizers. Iranian Journal of Soil Research 27(1): 35–46. [in Persian with English abstract]

  • Schaad N.W. Jones J. B. Chun W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria 3rd ed. American Phytopathological Society Press St Paul USA.

  • Shanmugam V. Thakur H. Gupta S. 2013. Use of chitinolytic Bacillus atrophaeus strain S2BC-2 antag-onistic to Fusarium spp. for control of rhizome rot of ginger. Annals of Microbiology 63(3): 989–996. DOI: 10.1007/s13213-012-0552-2.

  • Sharaf-Eldin M. Elkholy S. Fernández J.A. Junge H. Cheetham R. Guardiola J. Weathers P. 2008. Bacillus subtilis FZB24® affects flowers quantity and quality of saffron (Crocus sativus). Planta Medica 74(10): 1316–1320. DOI: 10.1055/s-2008-1081293.

  • Sharma T. Kaul S. Dhar M.K. 2015. Diversity of culturable bacterial endophytes of saffron in Kashmir India. SpringerPlus 4; article 661 13 p. DOI: 10.1186/s40064-015-1435-3.

  • Singh S. Kapoor K.K. 1999. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbus-cular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biology and Fertility of Soils 28: 139–144. DOI: 10.1007/s003740050475.

  • Sofi J.A. Kirmani N.A. Ansar-ul Haq S. 2008. Effect of integrated nutrient management on saffron yield and soil fertility. Asian Journal of Soil Science 3: 117–119.

  • Somasegaran P. Hoben H.J. 1994. Handbook for Rhizobia. Methods in Legume-Rhizobium Technology. Springer-Verlag 450 p. DOI: 10.1007/978-1-4613-8375-8.

  • Tamura K. Stecher G. Peterson D. Filipski A. Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. DOI: 10.1093/molbev/mst197.

  • Tilak K.V.B.R. Ranganayaki N. Pal K.K. De R. Saxena A.K. Nautiyal C.S. et al. 2005. Diversity of plant growth and soil health supporting bacteria. Current Science 89: 136–150.

Journal information
Impact Factor

CiteScore 2018: 0.51

SCImago Journal Rank (SJR) 2018: 0.207
Source Normalized Impact per Paper (SNIP) 2018: 0.497

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 255 4
PDF Downloads 312 203 5