Molecular Identification Of Trichoderma Strains Collected To Develop Plant Growth-Promoting And Biocontrol Agents

Open access

Abstract

Trichoderma strains that are beneficial to both the growth and health of plants can be used as plant growth-promoting fungi (PGPF) or biological control agents (BCA) in agricultural and horticultural practices. In order to select PGPF or BCA strains, their biological properties and taxonomy must be carefully studied. In this study, 104 strains of Trichoderma collected at geographically different locations in Poland for selection as PGPF or BCA were identified by DNA barcoding, based on the sequences of internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and on the sequences of translation elongation factor 1 alpha (tef1), chitinase 18-5 (chi18-5), and RNA polymerase II subunit (rpb2) gene fragments. Most of the strains were classified as: T. atroviride (38%), T. harzianum (21%), T. lentiforme (9%), T. virens (9%), and T. simmonsii (6%). Single strains belonging to T. atrobrunneum, T. citrinoviride, T. crassum, T. gamsii, T. hamatum, T. spirale, T. tomentosum, and T. viridescens were identified. Three strains that are potentially pathogenic to cultivated mushrooms belonging to T. pleuroticola and T. aggressivum f. europaeum were also identified. Four strains: TRS4, TRS29, TRS33, and TRS73 were classified to Trichoderma spp. and molecular identification was inconclusive at the species level. Phylogeny analysis showed that three of these strains TRS4, TRS29, and TRS33 belong to Trichoderma species that is not yet taxonomically established and strain TRS73 belongs to the T. harzianum complex, however, the species could not be identified with certainty.

Aldrich J., Cullis C.A. 1993. RAPD analysis in flax: optimization of yield and reproducibility using KlenTaq 1 DNA polymerase, Chelex 100, and gel purification of genomic DNA. Plant Molecular Biology Reporter 11: 128-141. DOI: 10.1007/BF02670471.

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402. DOI: 10.1093/nar/25.17.3389.

Atanasova L., Druzhinina I.S., Jaklitsch W.M. 2013. Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In: Mukherjee P.K., Horwitz B.A., Singh U.S., Mukherjee M., Schmoll M. (Eds.), Trichoderma: biology and applications. CABI, Wallingford, UK, pp. 10-42. DOI: 10.1079/9781780642475.0010.

Benítez T., Rincón A.M., Limón M.C., Codón A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7: 249-260.

Błaszczyk L., Popiel D., Chełkowski J., Koczyk G., Samuels G.J., Sobieralski K., Siwulski M. 2011. Species diversity of Trichoderma in Poland. Journal of Applied Genetics 52: 233-243. DOI: 10.1007/s13353-011-0039-z.

Carbone I., Kohn L.M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. DOI: 10.2307/3761358.

Chaverri P., Branco-Rocha F., Jaklitsch W.M., Gazis R.O., Degenkolb T., Samuels G.J. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558-590. DOI: 10.3852/14-147.

Chaverri P., Castlebury L.A., Samuels G.J., Geiser D.M. 2003. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Molecular Phylogenetics and Evolution 27: 302-313. DOI: 10.1016/S1055-7903(02)00400-1.

Chaverri P., Gazis R.O., Samuels G.J. 2011. Trichoderma amazonicum, a new endophytic species on Heveabrasiliensis and H. guianensis from the Amazon basin. Mycologia 103: 139-151. DOI: 10.3852/10-078.

Cooke D.E.L., Duncan J.M. 1997. Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycological Research 101: 667-677. DOI: 10.1017/S0953756296003218.

Darriba D., Taboada G.L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. DOI: 10.1038/nmeth.2109.

Dodd S.L., Lieckfeldt E., Samuels G.J. 2003. Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 95: 27-40. DOI: 10.2307/3761959.

Druzhinina I.S., Kopchinskiy A.G., Komoń M., Bissett J., Szakacs G., Kubicek C.P. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology 42: 813-828. DOI: 10.1016/j.fgb.2005.06.007.

Druzhinina I.S., Kubicek C.P., Komoń-Żelazowska M., Mulaw T.B., Bissett J. 2010. The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolutionary Biology 10: 94. DOI: 10.1186/1471-2148-10-94.

Fekete C., Weszely T., Hornok L. 1996. Assignment of a PCR-amplified chitinase sequence cloned from Trichodermahamatum to resolved chromosomes of potential biocontrol species of Trichoderma. FEMS Microbiology Letters 145: 385-391. DOI: 10.1111/j.1574-6968.1996.tb08605.x.

Gal-Hemed I., Atanasova L., Komoń-Żelazowska M., Druzhinina I.S., Viterbo A., Yarden O. 2011. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Applied and Environmental Microbiology 77: 5100-5109. DOI: 10.1128/AEM.00541-11.

Gazis R., Chaverri P. 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Heveabrasiliensis) in Peru. Fungal Ecology 3: 240-254. DOI: 10.1016/j.funeco.2009.12.001.

Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190-194. DOI: 10.1094/PHYTO-96-0190.

Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. 2004. Trichoderma species – opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2: 43-56. DOI: 10.1038/nrmicro797.

Hermosa M.R., Grondona I., Iturriaga E.A., Diaz-Minguez J.M., Castro C., Monte E., Garcia-Acha I. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied and Environmental Microbiology 66: 1890-1898. DOI: 10.1128/AEM.66.5.1890-1898.2000.

Hermosa R., Rubio M.B., Cardoza R.E., Nicolás C., Monte E., Gutiérrez S. 2013. The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology 16: 69-80. DOI: 10.2436/20.1501.01.181.

Hoyos-Carvajal L., Orduz S., Bissett J. 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology 46: 615-631. DOI: 10.1016/j.fgb.2009.04.006.

Jaklitsch W.M. 2011. European species of Hypocrea part II: species with hyaline ascospores. Fungal Diversity 48: 1-250. DOI: 10.1007/s13225-011-0088-y.

Jaklitsch W.M., Samuels G.J., Dodd S.L., Lu B.S., Druzhinina I.S. 2006. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Studies in Mycology 56: 135-177. DOI: 10.3114/sim.2006.56.04.

Jaklitsch W.M., Samuels G.J., Ismaiel A., Voglmayr H. 2013. Disentangling the Trichoderma viridescens complex. Persoonia 31: 112-146. DOI: 10.3767/003158513X672234.

Jaklitsch W.M., Voglmayr H. 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology 80: 1-87. DOI: 10.1016/j.simyco.2014.11.001.

Kancelista A., Tril U., Stempniewicz R., Piegza M., Szczech M., Witkowska D. 2013. Application of lignocellulosic waste materials for the production and stabilization of Trichoderma biomass. Polish Journal of Environmental Studies 22: 1083-1090.

Kindermann J., El-Ayouti Y., Samuels G.J., Kubicek C.P. 1998. Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genetics and Biology 24: 298-309. DOI: 10.1006/fgbi.1998.1049.

Komoń-Żelazowska M., Bissett J., Zafari D., Hatvani L., Manczinger L., Woo S., Lorito M., Kredics L., Kubicek C.P., Druzhinina I.S. 2007. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Applied and Environmental Microbiology 73: 7415-7426. DOI: 10.1128/AEM.01059-07.

Kopchinskiy A., Komoń M., Kubicek C.P., Druzhinina I.S. 2005. TrichoBLAST: A multilocus database for Trichoderma and Hypocrea identifications. Mycological Research 109: 658-660. DOI: 10.1017/S0953756205233397.

Kredics L., Hatvani L., Naeimi S., Körmöczi P., Manczinger L., Vágvölgyi C., Druzhinina I. 2014. Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (Eds.), Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp. 3-24. DOI: 10.1016/B978-0-444-59576-8.00001-1.

Kullnig C.M., Krupica T., Woo S.L., Mach R.L., Rey M., Benítez T., Lorito M., Kubicek C.P. 2001. Confusion abounds over identities of Trichoderma biocontrol isolates. Mycological Research 105: 769-772. DOI: 10.1017/S0953756201229967.

Kullnig-Gradinger C.M., Szakacs G., Kubicek C.P. 2002. Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycological Research 106: 757-767. DOI: 10.1017/S0953756202006172.

Longa C.M.O., Savazzini F., Tosi S., Elad Y., Pertot I. 2009. Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. Journal of Applied Microbiology 106: 1549-1557. DOI: 10.1111/j.1365-2672.2008.04117.x.

López-Quintero C.A., Atanasova L., Franco-Molano A.E., Gams W., Komoń-Żelazowska M., Theelen B., Müller W.H., Boekhout T., Druzhinina I. 2013. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie van Leeuwenhoek, Journal of Microbiology 104: 657-674. DOI: 10.1007/s10482-013-9975-4.

Monfil V.O., Casas-Flores S. 2014. Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (Eds.), Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp. 429-453. DOI: 10.1016/B978-0-444-59576-8.00032-1.

Mulaw T.B., Kubicek C.P., Druzhinina I.S. 2010. The rhizosphere of Coffea arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity 2: 527-549. DOI: 10.3390/d2040527.

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. DOI: 10.1093/sysbio/sys029.

Samuels G.J., Dodd S.L., Lu B.S., Petrini O., Schroers H.J., Druzhinina I.S. 2006. The Trichoderma koningii aggregate species. Studies in Mycology 56: 67-133. DOI: 10.3114/sim.2006.56.03.

Skoneczny D., Oskiera M., Szczech M., Bartoszewski G. 2015. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiologica 60: 297-307. DOI: 10.1007/s12223-015-0385-z.

Smolińska U., Gołębiewska E., Kowalska B., Kowalczyk W., Szczech M. 2014a. Materiały odpadowe jako nośniki antagonistycznych grzybów Trichoderma. Inżynieria i Ochrona Środowiska 17: 5-20.

Smolińska U., Kowalska B., Kowalczyk W., Szczech M. 2014b. The use of agro-industrial wastes as carriers of Trichoderma fungi in the parsley cultivation. Scientia Horticulturae 179: 1-8. DOI: 10.1016/j.scienta.2014.08.023.

Stewart A., Hill R. 2014. Applications of Trichoderma in plant growth promotion. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (Eds.), Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp. 415-428. DOI: 10.1016/b978-0-444-59576-8.00031-x.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882. DOI: 10.1093/nar/25.24.4876.

Vandroemme J., Baeyen S., Van Vaerenbergh J., De Vos P., Maes M. 2008. Sensitive real-time PCR detection of Xanthomonas fragariae in strawberry plants. Plant Pathology 57: 438-444. DOI: 10.1111/j.1365-3059.2007.01813.x.

White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (Eds.), PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA, pp. 315-322. DOI: 10.1016/b978-0-12-372180-8.50042-1.

Journal Information


CiteScore 2017: 0.53

SCImago Journal Rank (SJR) 2017: 0.196
Source Normalized Impact per Paper (SNIP) 2017: 0.494

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 18
PDF Downloads 66 66 14