Rapid Evaluation of Germinability of Primed China Aster (Callistephus Chinensis Ness.) Seeds with Physiological and Biochemical Markers

Open access

Abstract

The correlation between the sowing value of primed China aster seeds represented by germination percentage (GP), mean germination time (MGT), germination uniformity expressed as the time between 25% and 75% of germinated seeds (T75-25) and some selected physiological characteristics - total activity of dehydrogenases (TAD), activity of catalase (AC), activity of cell cycle (ACC) and electrolyte leakage (EL) has been analysed in order to find useful markers of biological quality of seeds. To achieve this objective, analyses of effects of three methods of water supply to seeds viz. - hydroconditioning by soaking in excessive amount of water (M1), hydroconditioning by soaking in limited amount of water (M2) or hydroconditioning by contact with solid carrier of water - matriconditioning (M3), three levels (30.0, 35.0 and 40.0%) of seed moisture content (m.c.) and three incubation periods (1, 8 and 10 days) during priming and hence their influence on germination properties (GP, MGT, T75-25) in comparison with TAD, AC, ACC and EL were determined. The results showed that MGT and T75-25 were correlated with TAD, AC, ACC and EL, irrespective of their priming method and sowing value. Therefore, all the investigated physiological/biochemical parameters of seed quality can be used as markers of germinability and sowing value reached by primed China aster seeds. The results also proved that, irrespective of the water supply method applied, hydration of seeds up to 37.5% m.c., and their incubation at 20 °C for 8 days, followed by drying to their initial moisture content, increased to the greatest extent the speed and uniformity of seed germination and their physiological activity.

Afzal I.F., Munir C.M., Ayub S.M.A., Basra A., Hameed A., Nawaz A. 2009. Changes in antioxidant enzymes, germination capacity and vigour of tomato seeds in response of priming with polyamines. Seed Sci. Technol. 37: 765-770.

Amooaghaie R., Nikzad K., Shareghi B. 2010. The effect of priming on emergence and biochemical changes of tomato seeds under suboptimal temperatures. Seed Sci. Technol. 38: 508-512.

Badek B., van Duijn B., Grzesik M. 2006. Effects of water supply methods and seed moisture content on germination of China aster (Callistephus chinensis) and tomato (Lycopersicon esculentum Mill.) seeds. Eur. J. Agron. 24:.45-51. DOI: 10.1016/j.eja.2005.04.004.

Badek B., van Duijn B., Grzesik M. 2007. Effects of water supply methods and incubation on germination of China aster (Callistephus chinensis) seeds. Seed Sci. Technol. 35: 569-576.

Bailly C., Benamar A., Corbineau F., Côme D. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated ageing. Physiol. Plant. 97: 104-110. DOI: 10.1111/j.1399-3054.1996.tb00485.

Bailly C., Benamar A., Corbineau F., Côme D. 2000. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci. Res. 10: 35-42. DOI: 10.1017/S096025800000040.

Bailly C., Bogatek-Leszczynska R., Côme D., Corbineau F. 2002. Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunfower seedlings from seeds of different vigour. Seed Sci. Res. 12: 47-55. DOI: 10.1079/SSR200197.

Bailly C., Leymarie J., Lehner A., Rousseau S., Côme D., Corbineau F. 2004. Catalase activity and expression in developing sunflower seeds as related to drying. J. Exp. Bot. 55: 475-483. DOI: 10.1093/jxb/erh050.

Bakht J., Shafi M., Shah R., Raziuddin., I. Munir 2011. Response of maize cultivars to various priming sources. Pak. J. Bot. 43(1): 205-212.

Bewley J.D., Black M. 1994. Seeds. Physiology of development and germination (2nd edition). New York, Plenum Press.

Bray C.M., Davison P.A., Ashraf M., Taylor R.M. 1989. Biochemical changes during priming of leek seeds. Ann. Bot. 63: 185-193.

Capron I., Corbineau F., Dacher F., Job C., Côme D., Job D. 2000. Sugarbeet seed priming: effects of priming conditions on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci. Res. 10: 243-254. DOI: 10.1017/S0960258500000271.

de Castro R.D., Zheng X.Y., Bergervoet J.H.W., de Vos C.H.R., Bino R.J. 1995. ß-tubulin accumulation and DNA replication in imbibing tomato seeds. Plant Physiol. 109: 499-504. DOI: 10.1104/pp.109.2.499.

Chen K., Arora R. 2013. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 94: 33-45. DOI: 10.1016/j.envexpbot.2012.03.005.

Demir I., Mavi K. 2008. Seed vigour evaluation of cucumber (Cucumis sativus L.) seeds in relation to seedling emergence. Res. J. Seed Sci. 1: 19-25. DOI: 10.3923/rjss.2008.19.25.

Demir I., Cebeci C., Guloksuz T. 2012. Electrical conductivity measurement to predict germination of commercially available radish seed lots. Seed Sci. Technol. 40: 229-237.

Dursun A., Ekinci M. 2010. Effects of different priming treatments and priming durations on germination percentage of parsley (Petroselinum crispum L.) seeds. Agr. Sci. 1(01): 17-53. DOI: 10.4236/as.2010.11003.

El-Araby M.M., Hegazi A.Z. 2004. Responses of tomato seeds to hydro- and osmo-priming, and possible relations of some antioxidant enzymes and endogenous polyamine fractions. Egyptian J. Biol. 6: 81-93.

Farooq M., Aziz T., ur Rehman H., ur Rehman A., Cheema S.A., Aziz T. 2011. Evaluating surface drying and re-drying for wheat seed priming with polyamines: effects on emergence, early seedling growth and starch metabolizm. Acta Physiol. Plant. 33: 1707-1713. DOI: 10.1007/s11738-010-0707-3.

Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J., Job D. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126: 835-848. DOI: 10.1104/pp.126.2.835.

Górnik K., Grzesik M. 2002. Effect of Asahi SL on China aster ‘Aleksandra’ seed yield, germination and some metabolic events. Acta Physiol. Plant. 24: 379-383.

Grzesik M., Szafirowska A., Sokołowska A. 2000. Cytological and physiological effects of matriconditioning on cucumber seeds germination. Acta Hort. 517: 113-120.

Grzesik M., Romanowska-Duda Z.B. 2009. The effect of potential climatic changes, Cyanobacteria, Biojodis and Asahi SL on development of the Virginia fanpetals (Sida hermaphrodita) plants. Pamiętnik Puławski 151: 483-491.

Grzesik M., Romanowska-Duda Z.B. 2014. Biotechnological potential of algae and Cyanobacteria in improving germination, growth and metabolic activity of corn plants by grain conditioning and root application. Pol. J. Environ. Stud. 23: 1147-1153.

Guo S.J., Wang Y.C., Wang W.S. 2012. Effects of priming treatments on germination and biochemical characteristics of Pinus bungeana seeds. For. Stud. China. 14(3): 200-204. DOI: 10.1007/s11632-012-0302-3.

Hu J., Xie X.J., Wang Z.F., Song W.J. 2006. Sand priming improves alfalfa germination under high salt concentration stress. Seed Sci. Technol. 34: 199-204.

ISTA 2011. International Rules for Seed Testing. Seed Sci. Technol. 39.

Job C., Kersulec A., Ravasio L., Chareyre S., Pepin R., Job D. 1997. The solubilization of the basic subunit of sugarbeet seed 11-S globulin during priming. Seed Sci. Res. 7: 225-243. DOI: 10.1017/S0960258500003585.

Job D., Capron I., Job C., Dacher F., Corbineau F., Côme D. 2000. Identification of germination-specific protein markers and their use in seed priming technology. In: Black M., Bradford K. J., Va’zquez-Ramos J. (Eds.), Seed Biology: Advances and Applications. CAB International. Wallingford, UK, pp. 449-459.

Joosen R.V.L., Kodde J., Willems L.A.J., Ligterink W., Hilhorst H.W.M. 2010. Seed Testing International. ISTA News Bulletin 140: 4-8.

Kępczyńska E., Piękna-Grochala J., Kępczyński J. 2003. Effect of matriconditioning on onion seed germination, seedling emergence and associated physical and metabolic events. Plant Growth Regul. 41: 269-278. DOI: 10.1023/B:GROW.0000007509.94430.

Khajeh-Hosseini M., Lomholt A., Matthews S. 2009. Mean germination time in the laboratory estimates the relative vigour and field performance of commercial lots of maize. Seed Sci. Technol. 37: 446-461.

Khajeh-Hosseini M., Rezazadeh M. 2011. The electrical conductivity of soak-water of chickpea seeds provides a quick test indicative of field emergence. Seed Sci. Technol. 39: 692-696.

Lei Y.B., Song S.Q., Fu J.R. 2005. Possible involvement of anti-oxidant enzymes in the cross-tolerance of the germination/growth of wheat seeds to salinity and heat stress. J. Integr. Plant Biol. 47: 1211-1219.

Matthews S., Powell A.A. 2006. Electrical conductivity vigour test: physiological basis and use. ISTA News Bulletin 131: 32-35.

Matthews S., Beltram E., El-kha dem R., Khaj eh-Hosseini M., Nasehza deh M., Urso G. 2011. Evidence that time for repair during early germination leads to vigour differences in maize. Seed Sci. Technol. 39: 501-509.

Nascimento W.M., Aragao F.A.S. 2004. Musk-melon seed priming in relation to seed vigor. Sci. Agr. 61(1): 114-117. DOI: 10.1590/S0103-90162004000100019.

Onwimol D., Chanprame S., Thongket T. 2012. Arrest of cell cycle associated with delayed radicle emergence in deteriorated cucumber seed. Seed Sci. Technol. 40: 238-247.

Powell A.A. 1986. Cell membranes and seed leachate conductivity in relation to the quality of seed for sowing. J. Seed Technol. 10: 81-99.

Rewers M., Sadowski J., Śliwińska E. 2009. Endoreduplication in cucumber (Cucumis sativus) seeds during development, after processing and storage, and during germination. Ann. Appl. Biol. 155: 431-438. DOI:10.1111/j.1744-7348.2009.00362.

Śliwińska E. 2008. Estimation of DNA content in plants using flow cytometry. In: Cytometry methods. Pituch- Noworolska A., Skierski J. (Eds.), Post. Biol. Kom. 24: 165-176.

Śliwińska E. 2009. Nuclear DNA replication and seed quality. Seed Sci. Res. 19: 15-25. DOI: 10.1017/S0960258508186275.

Taylor A.G, Churchill D.B., Lee S.S., Bisland D.M., Cooper T.M. 1993. Color sorting of coated brassica seeds by fluorescent sinapine leakage to improve germination. J. Amer. Soc. Hort. Sci. 118: 551-556.

Varier A., Vari A.K., Dadlani M. 2010. The sub-cellular basis of seed priming. Curr. Sci. 99: 450-456.

Ventura L., Donà M., Macovei A., Carbonera D., Buttafava A., Mondoni A., Rossi G., Balestrazzi A. 2012. Understanding the molecular pathways associated with seed vigor. Plant Physiol. Biochem. 60: 196-206. DOI: 10.1016/j.plaphy.2012.07.031.

Yu-jie L.J., Dorna H., Guo S.J., Zhai M. P. 2009. Effects of osmopriming and hydropriming on vigour and germination of China aster [Callistephus chinensis (L.) Nees.] seeds. For. Stud. China. 11(2): 111-117. DOI: 10.1007/s11632-009-0019-0.

Journal Information


CiteScore 2017: 0.53

SCImago Journal Rank (SJR) 2017: 0.196
Source Normalized Impact per Paper (SNIP) 2017: 0.494

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 125 23
PDF Downloads 61 58 10