How Do Rare Earth Elements (Lanthanoids) Affect Root Development and Protocorm-Like Body Formation in Hybrid CYMBIDIUM?

Open access


Only few studies in the plant tissue culture literature have examined the impact of lanthanoids, or rare earth elements, on in vitro plant organogenesis. In this study, using a model plant, hybrid Cymbidium Twilight Moon ‘Day Light’, the impact of six lanthanoids (lanthanum (III) nitrate hexahydrate (La(NO3)3 · 6H2O), cerium (III) nitrate hexahydrate (Ce(NO3)3 · 6H2O), neodymium (III) nitrate hexahydrate (Nd(NO3)3 · 6H2O), praseodymium (III) nitrate hexahydrate (Pr(NO3)3 · 6H2O), samarium (III) nitrate hexahydrate (Sm(NO3)3 · 6H2O), gadolinium (III) nitrate hexahydrate (Gd(NO3)3 · 6H2O) on new protocorm-like body (neo-PLB) formation on Teixeira Cymbidium (TC) medium was examined. 0 (control), 1, 2, 4 and 8 mg·dm-3 of each lanthanoid was tested. All lanthanoids could produce more neo-PLBs and neo-PLB fresh weight than TC medium lacking plant growth regulators (PGRs), suggesting some PGR-like ability of lanthanoids, although PLB-related traits (percentage of half-PLBs forming neo-PLBs; number of neo-PLBs formed per half-PLB; fresh weight of half-PLB + neo-PLBs) was always significantly lower than TC medium containing PGRs. Except for Gd, all other lanthanoids had no negative impact on the number of new leaves from neo-PLB-derived shoots, but all lanthanoids showed a significantly lower plant height, shoot fresh weight and shoot dry weight and, in most cases, SPAD (chlorophyll content) value. In addition, using the same concentration of the six lanthanoids, the ability to fortify root formation of neo-PLB-derived plantlets was also assessed. Except for Sm, all other lanthanoids significantly increased the number of roots, root fresh and dry weight.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Dai J. Zhang Y-Z. Liu Y. 2008. Microcalorimetric investigation on metabolic activity and effects of La (III) in mitochondria isolated from indica rice 9311. Biol. Trace Elem. Res. 121(1): 60-68. DOI: 10.1007/s12011-007-0062-4.

  • Diatloff E. Smith F.W. Asher C.J. 1995a. Rare earth elements and plant growth. II. Responses of corn and mungbean to low concentrations of lantha–num in dilute continuously flowering nutrient solutions. J. Plant Nutr. 18: 1977-1989. DOI: 10.1080/01904169509365038.

  • Diatloff E. Smith F.W. Asher C.J. 1995b. Rare earth elements and plant growth. III. Responses of corn and mungbean to low concentrations of ce–rium in dilute continuously flowering nutrient solutions. J. Plant Nutr. 18: 1991-2003. DOI: 10.1080/01904169509365039.

  • Guo B. Xu L.L. Guan Z.J. Wei Y.H. 2012. Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir. Biol Trace Elem Res. 147: 334-340. DOI: 10.1007/s12011-012-9326-8.

  • He Y.W. Loh C.S. 2000. Cerium and lanthanum promote floral initiation and reproductive growth of Ara-bidopsis thaliana. Plant Sci. 159: 117-124. DOI: 10.1016/S0168-9452(00)00338-1.

  • Hong F. Song W-P. Wan Z-G. Yu M-L. Yu J. Liu J-J. Sheng Y. Xi Q-H. 2005. Effect of La(III) on the growth and aging of root of loquat plantlet in vitro. Biol. Trace Elem. Res. 104: 185-191. DOI: 10.1385/BTER:104:2:185.

  • Hossain M.M. Kant R. Van P.T. Winarto B. Zeng S-J. Teixeira da Silva J.A. 2013. The application of bio–technology to orchids. Crit. Rev. Plant Sci. 32(2): 69-139. DOI: 10.1080/07352689.2012.715984.

  • Hu Z. Richter H. Sparovek G. Schnug E. 2004. Physi–ological and biochemical effects of rare earth ele–ments on plants and their agricultural significance: a review. J. Plant Nutr. 27: 183-220. DOI: 10.1081/PLN-120027555.

  • Küpper H. Küpper F.C. Spiller M. 2006. [Heavy metal]-chlorophylls formed in vivo during heavy metal stress and degradation products formed during digestion extraction and storage of plant material. In: Chlorophylls and Bacteriochloro-phylls: Advances in Photosynthesis and Respira–tion vol. 25 Springer the Netherlands pp. 67–77. DOI: 10.1007/1-4020-4516-6 5.

  • Liu M. Hasenstein K.H. 2005. La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta 220: 658-666. DOI: 10.1007/s00425-004-1379-2.

  • Luo J.P. Wang Y. Zha X.Q. Huang L. 200. Micropropa–gation of Dendrobium densiflorum Lindl. ex Wall. through protocorm-like bodies: effects of plant growth regulators and lanthanoids. Plant Cell Tiss. Org. 93: 333-340. DOI: 10.1007/s11240-008-9381-1.

  • Ozaki T. Enomoto S. Minai Y. Ambe S. Ambe F. Makide Y. 2000. Beneficial effect of rare earth elements on the growth of Dryopteris erythrosora. J. Plant Physiol. 156: 330-334. DOI: 10.1016/S0176-1617(00)80070-X.

  • Ruíz-Herrera L.F. Sánchez-Calderón L. Herrera -Estrella L. López -Bucio J. 2012. Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings. Plant Soil 353: 231-247. DOI: 10.1007/s11104-011-1026-1.

  • Shan C. Zhao X. 2014. Effects of lanthanum on the ascorbate and glutathione metabolism of Vigna radiata seedlings under salt stress. Biol. Planta-rum (in press). DOI: 10.1007/s10535-014-0413-x.

  • Sharma S. Shahzad A. Teixeira da Silva J.A. 2013. Synseed technology - A complete syn–thesis. Biotechnol. Adv. 31: 186-207. DOI: 10.1016/j.biotechadv.2012.09.007.

  • Song W-P. Hong F. Wan Z-G. Zhou Y-Z. Gu F-G. Xu H-G. Yu M-L. Chang Y-H. Zhao M-Z. Su J-L. 2003. Effects of cerium on nitrogen metabolism of peach plantlet in vitro. Biol. Trace Elem. Res. 95: 259-268. DOI: 10.1385/BTER:95:3:259.

  • Teixeira da Silva J.A. 2012a. Production of synseed for hybrid Cymbidium using protocorm-like bodies. J. Fruit Ornam. Plant Res. 20(2): 135-146. DOI: 10.2478/v10290-012-0023-7.

  • Teixeira da Silva J.A. 2012b. New basal media for pro-tocorm-like body and callus induction of hybrid Cymbidium. J. Fruit Ornam. Plant Res. 20(2): 127–133. DOI: 10.2478M0290-012-0022-8.

  • Teixeira da Silva J.A. 2013a. Orchids: advances in tissue culture genetics phytochemistry and transgenic biotechnology. Floriculture Orna–mental Biotech. 7(1): 1-52.

  • Teixeira da Silva J.A. 2013b. The role of thin cell layers in regeneration and transformation in or–chids. Plant Cell Tiss. Org. 113: 149-161. DOI: 10.1007/s11240-012-0274-y.

  • Teixeira da Silva J.A. 2013c. The phloroglucinol conundrum: increase in root growth of hybrid Cymbidium (Orchidaceae) with no toxic effect on protocorm-like body formation. Plant Tiss. Cult. Biotechnol. 23: 275-282.

  • Teixeira da Silva J.A. Chan M-T. Sanjaya Chai M-L. Tanaka M. 2006a. Priming abiotic factors for opti–mal hybrid Cymbidium (Orchidaceae) PLB and cal–lus induction plantlet formation and their subse–quent cytogenetic stability analysis. Sci. Hortic. 109: 368-378. DOI: 10.1016/j.scienta.2006.05.016.

  • Teixeira da Silva J.A. Dobránszki J. 2013. How timing of sampling can affect the outcome of the quantita–tive assessment of plant organogenesis. Sci. Hortic. 159: 59-66. DOI: 10.1016/j.scienta.2013.05.001.

  • Teixeira da Silva J.A. Dobránszki J. Ross S. 2013. Phloroglucinol in plant tissue culture. In Vitro Cell. Dev. - Pl. 49: 1-16. DOI: 10.1007/s11627-013-9491-2.

  • Teixeira da Silva J.A. Norikane A. Tanaka M. 2007. Cymbidium: successful in vitro growth and subse–quent acclimatization. Acta Hort. 748: 207-214.

  • Teixeira da Silva J.A. Singh N. Tanaka M. 2006b. Priming biotic factors for optimal protocorm-like body and callus induction in hybrid Cymbidium (Orchidaceae) and assessment of cytogenetic stability in regenerated plantlets. Plant Cell Tiss. Org. 84: 119-128. DOI: 10.1007/s11240-005-9003-0.

  • Teixeira da Silva J.A. Tanaka M. 2006. Multiple rege–neration pathways via thin cell layers in hybrid Cymbidium (Orchidaceae). J. Plant Growth Regul. 25: 203-210. DOI: 10.1007/s00344-005-0104-0.

  • Teixeira da Silva J.A. Yam T. Fukai S. Nayak N. Tanaka M. 2005. Establishment of optimum nu–trient media for in vitro propagation of Cymbidium Sw. (Orchidaceae) using protocorm-like body segments. Propag. Ornam. Plants 5: 129-136.

  • Vacin E. Went F.W. 1949. Some pH changes in nu–trient solutions. Bot. Gaz. 110: 605-613.

  • Wikipedia 2013.

Journal information
Impact Factor

CiteScore 2018: 0.51

SCImago Journal Rank (SJR) 2018: 0.207
Source Normalized Impact per Paper (SNIP) 2018: 0.497

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 94 2
PDF Downloads 71 52 3