Using Beerkan experiments to estimate hydraulic conductivity of a crusted loamy soil in a Mediterranean vineyard

Open access

Abstract

In bare soils of semi-arid areas, surface crusting is a rather common phenomenon due to the impact of raindrops. Water infiltration measurements under ponding conditions are becoming largely applied techniques for an approximate characterization of crusted soils. In this study, the impact of crusting on soil hydraulic conductivity was assessed in a Mediterranean vineyard (western Sicily, Italy) under conventional tillage. The BEST (Beerkan Estimation of Soil Transfer parameters) algorithm was applied to the infiltration data to obtain the hydraulic conductivity of crusted and uncrusted soils. Soil hydraulic conductivity was found to vary during the year and also spatially (i.e., rows vs. inter-rows) due to crusting, tillage and vegetation cover. A 55 mm rainfall event resulted in a decrease of the saturated soil hydraulic conductivity, Ks, by a factor of 1.6 in the inter-row areas, due to the formation of a crusted layer at the surface. The same rainfall event did not determine a Ks reduction in the row areas (i.e., Ks decreased by a non-significant factor of 1.05) because the vegetation cover intercepted the raindrops and therefore prevented alteration of the soil surface. The developed ring insertion methodology on crusted soil, implying pre-moistening through the periphery of the sampled surface, together with the very small insertion depth of the ring (0.01 m), prevented visible fractures. Consequently, Beerkan tests carried out along and between the vine-rows and data analysis by the BEST algorithm allowed to assess crusting-dependent reductions in hydraulic conductivity with extemporaneous measurements alone. The reliability of the tested technique was also confirmed by the results of the numerical simulation of the infiltration process in a crusted soil. Testing the Beerkan infiltration run in other crusted soils and establishing comparisons with other experimental methodologies appear advisable to increase confidence on the reliability of the method that seems suitable for simple characterization of crusted soils.

Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., Iovino, M., 2013. A simple field method to measure the hydrodynamic properties of soil surface crust. Journal of Agricultural Engineering, 44, 74–79. https://doi.org/10.4081/jae.2013.(s1):e14

Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., Iovino, M., 2016. Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24–33. https://doi.org/10.1016/j.geoderma.2015.12.029

Angulo-Jaramillo, R., Bagarello, V., Iovino, M., Lassabatere, L., 2016. Soils with specific features. In: Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing, pp. 289–354. https://doi.org/10.1007/978-3-319-31788-5_4

Assouline, S., 2004. Rainfall-induced soil surface sealing. Vadose Zone Journal, 3, 570–591.

Assouline, S., Mualem, Y., 2002. Infiltration during soil sealing: The effect of areal heterogeneity of soil hydraulic properties. Water Resources Research, 38, 1286. https://doi.org/10.1029/2001WR001168

Assouline, S., Mualem, Y., 2006. Runoff from heterogeneous small bare catchments during soil surface sealing. Water Resources Research, 42, W12405. https://doi.org/10.1029/2005WR004592

Bagarello, V., Iovino, M., Elrick, D., 2004. A Simplified Falling-Head Technique for Rapid Determination of Field-Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 68, 66. https://doi.org/10.2136/sssaj2004.6600

Bagarello, V., Stefano, C.D., Ferro, V., Iovino, M., Sgroi, A., 2010. Physical and hydraulic characterization of a clay soil at the plot scale. Journal of Hydrology, 387, 54–64. https://doi.org/10.1016/j.jhydrol.2010.03.029

Bagarello, V., Castellini, M., Di Prima, S., Iovino, M., 2014a. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501. https://doi.org/10.1016/j.geoderma.2013.08.032

Bagarello, V., Di Prima, S., Iovino, M., 2014b. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal, 78, 724. https://doi.org/10.2136/sssaj2013.06.0231

Bedaiwy, M.N.A., 2008. Mechanical and hydraulic resistance relations in crust-topped soils. Catena, 72, 270–281. https://doi.org/10.1016/j.catena.2007.05.012

Biddoccu, M., Ferraris, S., Pitacco, A., Cavallo, E., 2017. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil and Tillage Research, 165, 46–58. https://doi.org/10.1016/j.still.2016.07.017

Bradford, J.M., Ferris, J.E., Remley, P.A., 1987. Interrill soil erosion processes: I. Effect of surface sealing on infiltration, runoff, and soil splash detachment. Soil Science Society of America Journal, 51, 1566–1571.

Brodie, I., Rosewell, C., 2007. Theoretical relationships between rainfall intensity and kinetic energy variants associated with stormwater particle washoff. Journal of Hydrology, 340, 40–47. https://doi.org/10.1016/j.jhydrol.2007.03.019

Brooks, R.H., Corey, T., 1964. hydraulic properties of porous media. Hydrol. Paper 3. Colorado State University, Fort Collins.

Burdine, N.T., 1953. Relative permeability calculation from pore size distribution data. Petr. Trans. Am. Inst. Min. Metall. Eng. 198, 71–77.

Carsel, R.F., Parrish, R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 24, 755–769. https://doi.org/10.1029/WR024i005p00755 .

Castellini, M., Di Prima, S., Iovino, M., 2018. An assessment of the BEST procedure to estimate the soil water retention curve: A comparison with the evaporation method. Geoderma, 320, 82–94. https://doi.org/10.1016/j.geoderma.2018.01.014

Celette, F., Gaudin, R., Gary, C., 2008. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. European Journal of Agronomy, 29, 153–162. https://doi.org/10.1016/j.eja.2008.04.007

Chahinian, N., Moussa, R., Andrieux, P., Voltz, M., 2006. Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots. Journal of Hydrology, 326, 135–152. https://doi.org/10.1016/j.jhydrol.2005.10.038

Ciollaro, G., Lamaddalena, N., 1998. Effect of tillage on the hydraulic properties of a vertic soil. Journal of Agricultural Engineering Research, 71, 147–155. https://doi.org/10.1006/jaer.1998.0312

Coutinho, A.P., Lassabatere, L., Montenegro, S., Antonino, A.C.D., Angulo-Jaramillo, R., Cabral, J.J.S.P., 2016. Hydraulic characterization and hydrological behaviour of a pilot permeable pavement in an urban centre, Brazil. Hydrol. Process., 30, 4242–4254. https://doi.org/10.1002/hyp.10985

Decagon, 2014. Minidisk Infiltrometer User’s Manual. Decagon Devices, Inc., Pullman, USA, 24 p.

Di Prima, S., 2015. Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture, 118, 390–395. https://doi.org/10.1016/j.compag.2015.09.022

Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. https://doi.org/10.1016/j.geoderma.2015.08.006

Di Prima, S., Bagarello, V., Lassabatere, L., Angulo-Jaramillo, R., Bautista, I., Burguet, M., Cerdà, A., Iovino, M., Prosdocimi, M., 2017. Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil. Hydrological Processes, 31, 3520–3532. https://doi.org/10.1002/hyp.11273

Di Prima, S., Concialdi, P., Lassabatere, L., Angulo-Jaramillo, R., Pirastru, M., Cerda, A., Keesstra, S., 2018a. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena, 167, 373–384. https://doi.org/10.1016/j.catena.2018.05.013

Di Prima, S., Rodrigo-Comino, J., Novara, A., Iovino, M., Pirastru, M., Keesstra, S., Cerda, A., 2018b. Assessing soil physical quality of citrus orchards under tillage, herbicide and organic managements. Pedosphere, 28, 3, (in press).

Dunne, T., Zhang, W., Aubry, B.F., 1991. Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour. Res., 27, 2271–2285. https://doi.org/10.1029/91WR01585

Eigel, J.D., Moore, I., 1983. Effect of rainfall energy on infiltration into a bare soil. FAO.

Fox, D.M., Le Bissonnais, Y., 1998. Process-based analysis of aggregate stability effects on sealing, infiltration, and inter-rill erosion. Soil Science Society of America Journal, 62, 717–724.

Fox, D.M., Le Bissonnais, Y., Bruand, A., 1998. The effect of ponding depth on infiltration in a crusted surface depression. Catena, 32, 87–100. https://doi.org/10.1016/S0341-8162(98)00042-3

Freebairn, D.M., Gupta, S.C., Rawls, W.J., 1991. Influence of Aggregate Size and Microrelief on Development of Surface Soil Crusts. Soil Science Society of America Journal, 55, 188. https://doi.org/10.2136/sssaj1991.03615995005500010033x

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. SSSA Book Series. Soil Science Society of America, American Society of Agronomy, pp. 383–411.

Gonzalez-Sosa, E., Braud, I., Dehotin, J., Lassabatère, L., Angulo-Jaramillo, R., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S., Michel, K., 2010. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrol. Process., 24, 2382–2399. https://doi.org/10.1002/hyp.7640

Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res., 30, 2931–2935. https://doi.org/10.1029/94WR01788

Haverkamp, R., Arrúe, J., Vandervaere, J., Braud, I., Boulet, G., Laurent, J., Taha, A., Ross, P., Angulo-Jaramillo, R., 1996. Hydrological and thermal behaviour of the vadose zone in the area of Barrax and Tomelloso (Spain): Experimental study, analysis and modeling. Project UE n. EV5CCT 92, 00-90.

Healy, R.W., Ronan, A.D., 1996. Documentation of computer program VS2Dh for simulation of energy transport in variably saturated porous media; modification of the US Geological Survey’s computer program VS2DT (USGS Numbered Series No. 96–4230), Water-Resources Investigations Report. U.S. Geological Survey : Branch of Information Services [distributor].

Jarvis, N., Etana, A., Stagnitti, F., 2008. Water repellency, near-saturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma, 143, 223–230. https://doi.org/10.1016/j.geoderma.2007.11.015

Josa, R., Ginovart, M., Solé, A., others, 2010. Effects of two tillage techniques on soil macroporosity in sub-humid environment. Int. Agrophys., 24, 139–147.

Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments–BEST. Soil Science Society of America Journal, 70, 521. https://doi.org/10.2136/sssaj2005.0026

Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J.M., Šimůnek, J., Haverkamp, R., 2009. Numerical evaluation of a set of analytical infiltration equations. Water Resources Research, 45, W12415. https://doi.org/10.1029/2009WR007941

Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T., Delolme, C., 2010. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156, 316–325. https://doi.org/10.1016/j.geoderma.2010.02.031

Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P.E., Lenoir, T., Šimůnek, J., Angulo-Jaramillo, R., 2014. New analytical model for cumulative infiltration into dual-permeability soils. Vadose Zone Journal, 13, 12. https://doi.org/10.2136/vzj2013.10.0181

Lee, D.M., Elrick, D.E., Reynolds, W.D., Clothier, B.E., 1985. A comparison of three field methods for measuring saturated hydraulic conductivity. Canadian Journal of Soil Science, 65, 563–573.

Levy, G., Shainberg, I., Morin, J., 1986. Factors affecting the stability of soil crusts in subsequent storms. Soil Science Society of America Journal, 50, 196–201. https://doi.org/10.2136/sssaj1986.03615995005000010037x

Mualem, Y., Assouline, S., Rohdenburg, H., 1990. Rainfall induced soil seal (A) A critical review of observations and models. Catena, 17, 185–203.

Mubarak, I., Mailhol, J.C., Angulo-Jaramillo, R., Ruelle, P., Boivin, P., Khaledian, M., 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma, 150, 158–165. https://doi.org/10.1016/j.geoderma.2009.01.022

Mubarak, I., Angulo-Jaramillo, R., Mailhol, J.C., Ruelle, P., Khaledian, M., Vauclin, M., 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97, 1517–1526. https://doi.org/10.1016/j.agwat.2010.05.005

Nasta, P., Lassabatere, L., Kandelous, M.M., Šimŭnek, J., Angulo-Jaramillo, R., 2012. Analysis of the role of tortuosity and infiltration constants in the Beerkan method. Soil Science Society of America Journal, 76, 1999–2005.

Pare, N., Andrieux, P., Louchart, X., Biarnes, A., Voltz, M., 2011. Predicting the spatio-temporal dynamic of soil surface characteristics after tillage. Soil and Tillage Research, 114, 135–145. https://doi.org/10.1016/j.still.2011.04.003

Reynolds, W., 2008. Saturated hydraulic properties: ring infiltrometer. In: Carter, M.R., Gregorich, E.G. (Eds.): Soil Sampling and Methods of Analysis. 2nd ed. CRC Press, Boca Raton, pp. 1043–1056.

Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society of America Journal, 54, 1233. https://doi.org/10.2136/sssaj1990.03615995005400050006x

Reynolds, W., Elrick, D., 2002. Pressure infiltrometer. In: Dane, J.H., Topp, C. (Eds.): Methods of Soil Analysis, Part 4. SSSA Book Series. Soil Science Society of America, American Society of Agronomy, pp. 826–836.

Reynolds, W.D., Elrick, D.E., 2005. Chapter 6 Measurement and characterization of soil hydraulic properties. In: Álvarez-Benedí, J., Muñoz-Carpena, R. (Eds.): Soil-Water-Solute Process Characterization – An Integrated Approach. CRC Press, Boca Raton Römkens, M., 1979. Soil crusting: when crusts form and quantifying their effects [Soil hydraulic properties]. Agricultural Reviews and Manuals ARM NC.

Römkens, M., Prasad, S., Parlange, J., 1990. Surface seal development in relation to rainstorm intensity. Catena, Supplement, 17, 1–11.

Rose, C., 1960. Soil detachment caused by rainfall. Soil Science, 89, 28–35.

Smith, R.E., 1990. Analysis of infiltration through a two-layer soil profile. Soil Science Society of America Journal, 54, 1219–1227. https://doi.org/10.2136/sssaj1990.03615995005400050004x

Souza, E.S., Antonino, A.C.D., Heck, R.J., Montenegro, S.M.G.L., Lima, J.R.S., Sampaio, E.V.S.B., Angulo-Jaramillo, R., Vauclin, M., 2014. Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor beans (Ricinus communis L.) in the northeastern region of Brazil. Soil and Tillage Research, 141, 55–61. https://doi.org/10.1016/j.still.2014.04.004

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

Vandervaere, J.-P., Peugeot, C., Vauclin, M., Angulo Jaramillo, R., Lebel, T., 1997. Estimating hydraulic conductivity of crusted soils using disc infiltrometers and minitensiometers. Journal of Hydrology, HAPEX-Sahel 188–189, 203–223. https://doi.org/10.1016/S0022-1694(96)03160-5

Warrick, A.W., 1998. Spatial variability. In: Hillel, D. (Ed.): Environmental Soil Physics. Academic Press, San Diego, CA, pp. 655–675.

West, L., Chiang, S., Norton, L., 1992. The morphology of surface crusts. Soil Crusting: Chemical and Physical Processes, 301–308.

Xu, X., Kiely, G., Lewis, C., 2009. Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods. Soil Use and Management 25, 354–361. https://doi.org/10.1111/j.1475-2743.2009.00218.x

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone Journal, 9, 107. https://doi.org/10.2136/vzj2009.0039

Yilmaz, D., Lassabatere, L., Deneele, D., Angulo-Jaramillo, R., Legret, M., 2013. Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone Journal, 12. https://doi.org/10.2136/vzj2012.0121

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 232 93
PDF Downloads 158 158 72