Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses

Philippe Riboust 1 , 2 , Guillaume Thirel 2 , Nicolas Le Moine 3 , and Pierre Ribstein 3
  • 1 Sorbonne Universités, UPMC Univ., Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
  • 2 Hydrosystems and Bioprocesses Research Unit (HBAN), Irstea, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France
  • 3 Sorbonne Universités, UPMC Univ., Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France


Conceptual degree-day snow models are often calibrated using runoff observations. This makes the snow models dependent on the rainfall-runoff model they are coupled with. Numerous studies have shown that using Snow Cover Area (SCA) remote sensing observation from MODIS satellites helps to better constrain parameters. The objective of this study was to calibrate the CemaNeige degree-day snow model with SCA and runoff observations. In order to calibrate the snow model with SCA observations, the original CemaNeige SCA formulation was revisited to take into account the hysteresis that exists between SCA and the snow water equivalent (SWE) during the accumulation and melt phases. Several parametrizations of the hysteresis between SWE and SCA were taken from land surface model literature. We showed that they improve the performances of SCA simulation without degrading the river runoff simulation. With this improvement, a new calibration method of the snow model was developed using jointly SCA and runoff observations. Further analysis showed that the CemaNeige calibrated parameter sets are more robust for simulating independent periods than parameter sets obtained from discharge calibration only. Calibrating the snow model using only SCA data gave mixed results, with similar performances as using median parameters from all watersheds calibration.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andreadis, K.M., Lettenmaier, D.P., 2006. Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872-886. DOI: 10.1016/j.advwatres.2005.08.004.

  • Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snowdominated regions. Nature 438, 303-309. DOI: 10.1038/nature04141.

  • Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L.M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Moran-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., Vincent, C., 2017. The European mountain cryosphere: A review of past, current and future issues. Cryosphere Discuss, 2017, 1-60. DOI: 10.5194/tc-2016-290.

  • Bernsteinová, J., Bässler, C., Zimmermann, L., Langhammer, J., Beudert, B., 2015. Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. J. Hydrol. Hydromech., 63, 342-352. DOI: 10.1515/joh.h-2015-0037.

  • Clark, M.P., Hendrikx, J., Slater, A.G., Kavetski, D., Anderson, B., Cullen, N.J., Kerr, T., Hreinsson, E. Ö., Woods, R.A., 2011. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res., 47, 7. DOI:10.1029/2011WR010745.

  • Coron, L., Perrin, C., Michel, C., Andréassian, V., Brigode, P., Delaigue, O., Le Moine, N., Mathevet, T., Mouelhi, S., Oudin, L., Pushpalatha, R., Thirel, G., Valéry, A., 2017a. airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. R package version IRSTEA, Antony, France.

  • Coron, L., Thirel, G., Delaigue, O., Perrin, C., Andréassian, V., 2017b. The suite of lumped GR hydrological models in an R package. Environ. Model. Softw., 94, 166-171. DOI: 10.1016/j.envsoft.2017.05.002.

  • Da Ronco, P., De Michele, C., 2014. Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci., 18, 4579-4600. DOI: 10.5194/hess-18-4579-2014.

  • Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., Güntner, A., 2014. The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia. Water Resour. Res., 50, 2002-2021. DOI: 10.1002/2013WR014382.

  • Edijatno, Nascimento, N.D.O., Yang, X., Makhlouf, Z., Michel, C., 1999. GR3J: a daily watershed model with three free parameters. Hydrol. Sci. J., 44, 263-277. DOI: 10.1080/02626669909492221.

  • Egli, L., Jonas, T., 2009. Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps. Geophys. Res. Lett., 36, L02501. DOI: 10.1029/2008GL035545.

  • Essery, R., Pomeroy, J., 2004. Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: theoretical considerations. Ann. Glaciol., 38, 261-265. DOI: 10.3189/172756404781815275.

  • Franz, K.J., Karsten, L.R., 2013. Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol., 494, 160-175. DOI: 10.1016/j.jhydrol.2013.04.026.

  • Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc., 32, 675-701. DOI: 10.1080/01621459.1937.10503522.

  • Gafurov, A., Bárdossy, A., 2009. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci., 13, 1361-1373. DOI: 10.5194/hess-13-1361-2009.

  • Grayson, R.B., Blöschl, G., Western, A.W., McMahon, T.A., 2002. Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour., 25, 1313-1334. DOI: 10.1016/S0309-1708(02)00060-X.

  • Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 80-91. DOI: 10.1016/j.jhydrol.2009.08.003.

  • Hall, D.K., Salomonson, V.V., Riggs, G.A., 2006. MODIS/Terra, MODIS/Aqua Snow Cover Daily L3 Global 500m Grid, Version 5. NASA National Snow and Ice Data Center, Boulder, Colorado, USA. DOI: 10.5067/63NQASRDPDB0.

  • He, Z.H., Parajka, J., Tian, F.Q., Blöschl, G., 2014. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci., 18, 4773-4789. DOI: 10.5194/hess-18-4773-2014.

  • Helbig, N., van Herwijnen, A., Magnusson, J., Jonas, T., 2015. Fractional snow-covered area parameterization over complex topography. Hydrol. Earth Syst. Sci., 19, 1339-1351. DOI: 10.5194/hess-19-1339-2015.

  • Hublart, P., Ruelland, D., García de Cortázar-Atauri, I., Gascoin, S., Lhermitte, S., Ibacache, A., 2016. Reliability of lumped hydrological modeling in a semi-arid mountainous catchment facing water-use changes. Hydrol. Earth Syst. Sci., 20, 3691-3717. DOI: 10.5194/hess-20-3691-2016.

  • Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol., 424-425, 264-277. DOI: 10.1016/j.jhydrol.2012.01.011.

  • Kolberg, S.A., Gottschalk, L., 2006. Updating of snow depletion curve with remote sensing data. Hydrol. Process., 20, 2363-2380. DOI: 10.1002/hyp.6060.

  • Krajčí, P., Holko, L., Perdigão, R.A.P.P., Parajka, J., 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol., 519, 1769-1778. DOI: 10.1016/j.jhydrol.2014.08.064.

  • Krajčí, P., Holko, L., Parajka, J., 2016. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001-2014. J. Hydrol. Hydromech., 64, 12-22. DOI: 10.1515/johh-2016-0011.

  • Le Moine, N., Andréassian, V., Perrin, C., Michel, C., 2007. How can rainfall-runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resour. Res., 43, W06428. DOI: 10.1029/2006WR005608.

  • Liston, G.E., 2004. Representing subgrid snow cover heterogeneities in regional and global models. J. Clim., 17, 1381-1397. DOI: 10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2.

  • Luce, C.H., Tarboton, D.G., 2004. The application of depletion curves for parameterization of subgrid variability of snow. Hydrol. Process., 18, 1409-1422. DOI: 10.1002/hyp.1420.

  • Magand, C., Ducharne, A., Le Moine, N., Gascoin, S., 2014. Introducing hysteresis in snow depletion curves to improve the water budget of a land surface model in an Alpine catchment. J. Hydrometeorol., 15, 631-649. DOI: 10.1175/JHM-D-13-091.1.

  • Magnusson, J., Gustafsson, D., Hüsler, F., Jonas, T., 2014. Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resour. Res., 50, 7816-7835. DOI: 10.1002/2014WR015302.

  • Martinec, J., Rango, A., 1986. Parameter values for snowmelt runoff modelling. J. Hydrol., 84, 197-219. DOI: 10.1016/0022- 1694(86)90123-X.

  • Nitta, T., Yoshimura, K., Takata, K., O’ishi, R., Sueyoshi, T., Kanae, S., Oki, T., Abe-Ouchi, A., Liston, G.E., 2014. Representing variability in subgrid snow cover and snow depth in a global land model: offline validation. J. Clim., 27, 3318-3330. DOI: 10.1175/JCLI-D-13-00310.1.

  • Niu, G.-Y., Yang, Z.-L., 2007. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res. Atmospheres, 112, D21101. DOI: 10.1029/2007JD008674.

  • Parajka, J., Blöschl, G., 2008a. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 240-258. DOI: 10.1016/j.jhydrol.2008.06.006.

  • Parajka, J., Blöschl, G., 2008b. Spatio-temporal combination of MODIS images - potential for snow cover mapping. Water Resour. Res., 44, 3. DOI: 10.1029/2007WR006204.

  • Parajka, J., Pepe, M., Rampini, A., Rossi, S., Blöschl, G., 2010. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol., 381, 203-212. DOI: 10.1016/j.jhydrol.2009.11.042.

  • Parajka, J., Haas, P., Kirnbauer, R., Jansa, J., Blöschl, G., 2012. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol. Process., 26, 3327-3337. DOI: 10.1002/hyp.8389.

  • Perrin, C., Michel, C., Andréassian, V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol., 242, 275-301. DOI: 10.1016/S0022-1694(00)00393-0.

  • Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. J. Hydrol., 279, 275-289. DOI: 10.1016/S0022-1694(03)00225-7.

  • Poggio, L., Gimona, A., Brown, I., 2012. Spatio-temporal MODIS EVI gap filling under cloud cover: An example in Scotland. ISPRS J. Photogramm. Remote Sens., 72, 56-72. DOI: 10.1016/j.isprsjprs.2012.06.003.

  • Pokhrel, B.K., Chevallier, P., Andréassian, V., Tahir, A.A., Arnaud, Y., Neppel, L., Bajracharya, O.R., Budhathoki, K.P., 2014. Comparison of two snowmelt modelling approaches in the Dudh Koshi basin (eastern Himalayas, Nepal). Hydrol. Sci.J., 59, 1507-1518. DOI: 10.1080/02626667.2013.842282.

  • Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., Andréassian, V., 2011. A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J. Hydrol., 411, 66-76. DOI: 10.1016/j.jhydrol.2011.09.034.

  • Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., Canellas, C., Franchisteguy, L., Morel, S., 2008. Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J. Appl. Meteorol. Climatol., 47, 92-107. DOI: 10.1175/2007JAMC1636.1.

  • Rodell, M., Houser, P.R., 2004. Updating a land surface model with MODIS-derived snow cover. J. Hydrometeorol., 5, 1064-1075. DOI: 10.1175/JHM-395.1.

  • Shrestha, M., Wang, L., Koike, T., Tsutsui, H., Xue, Y., Hirabayashi, Y., 2014. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remotesensing data. Hydrol. Earth Syst. Sci., 18, 747-761. DOI: 10.5194/hess-18-747-2014.

  • Slater, A.G., Clark, M.P., 2006. Snow data assimilation via an Ensemble Kalman Filter. J. Hydrometeorol., 7, 478-493. DOI: 10.1175/JHM505.1.

  • Swenson, S.C., Lawrence, D.M., 2012. A new fractional snowcovered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res. Atmospheres, 117. DOI:10.1029/2012JD018178.

  • Thirel, G., Salamon, P., Burek, P., Kalas, M., 2013. Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter. Remote Sens., 5, 5825-5850. DOI: 10.3390/rs5115825.

  • Thirel, G., Andréassian, V., Perrin, C., 2015a. On the need to test hydrological models under changing conditions. Hydrol. Sci. J., 60, 1165-1173. DOI: 10.1080/02626667.2015.1050027.

  • Thirel, G., Andréassian, V., Perrin, C., Audouy, J.-N., Berthet, L., Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., Vaze, J., 2015b. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrol. Sci. J., 60, 1184-1199. DOI: 10.1080/02626667.2014.967248.

  • Troin, M., Arsenault, R., Brissette, F., 2015. Performance and uncertainty evaluation of snow models on snowmelt flow simulations over a nordic catchment (Mistassibi, Canada). Hydrology, 2, 289-317. DOI: 10.3390/hydrology2040289.

  • Troin, M., Poulin, A., Baraer, M., Brissette, F., 2016. Comparing snow models under current and future climates: Uncertainties and implications for hydrological impact studies. J. Hydrol., 540, 588-602. DOI: 10.1016/j.jhydrol.2016.06.055.

  • Valéry, A., Andréassian, V., Perrin, C., 2014a. “As simple as possible but not simpler”: What is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments. J. Hydrol. 517, 1166-1175. DOI: 10.1016/j.jhydrol.2014.04.059.

  • Valéry, A., Andréassian, V., Perrin, C., 2014b. “As simple as possible but not simpler”: What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. J. Hydrol., 517, 1176-1187. DOI: 10.1016/j.jhydrol.2014.04.058.

  • Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., Soubeyroux, J.-M., 2010. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int. J. Climatol., 30, 1627-1644. DOI: 10.1002/joc.2003.

  • Vuyovich, C.M., Jacobs, J.M., Daly, S.F., 2014. Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States. Water Resour. Res., 50, 11, 9088-9102. DOI: 10.1002/2013WR014734.

  • Zaitchik, B.F., Rodell, M., 2009. Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J. Hydrometeorol., 10, 130-148. DOI: 10.1175/2008JHM1042.1.


Journal + Issues