Modis Snowline Elevation Changes During Snowmelt Runoff Events in Europe

Open access

Abstract

This study evaluates MODIS snow cover characteristics for large number of snowmelt runoff events in 145 catchments from 9 countries in Europe. The analysis is based on open discharge daily time series from the Global Runoff Data Center database and daily MODIS snow cover data. Runoff events are identified by a base flow separation approach. The MODIS snow cover characteristics are derived from Terra 500 m observations (MOD10A1 dataset, V005) in the period 2000-2015 and include snow cover area, cloud coverage, regional snowline elevation (RSLE) and its changes during the snowmelt runoff events. The snowmelt events are identified by using estimated RSLE changes during a runoff event. The results indicate that in the majority of catchments there are between 3 and 6 snowmelt runoff events per year. The mean duration between the start and peak of snowmelt runoff events is about 3 days and the proportion of snowmelt events in all runoff events tends to increase with the maximum elevation of catchments. Clouds limit the estimation of snow cover area and RSLE, particularly for dates of runoff peaks. In most of the catchments, the median of cloud coverage during runoff peaks is larger than 80%. The mean minimum RSLE, which represents the conditions at the beginning of snowmelt events, is situated approximately at the mean catchment elevation. It means that snowmelt events do not start only during maximum snow cover conditions, but also after this maximum. The mean RSLE during snowmelt peaks is on average 170 m lower than at the start of the snowmelt events, but there is a large regional variability.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Blöschl G. Hall J. Parajka J. Perdigão R.A.P. Merz B. Arheimer B. Aronica G.T. Bilibashi A. Bonacci O. Borga M. Čanjevac I. Castellarin A. Chirico G.B. Claps P. Fiala K. Frolova N. Gorbachova L. Gül A. Hannaford J. Harrigan S. Kireeva M. Kiss A. Kjeldsen T.R. Kohnová S. Koskela J.J. Ledvinka O. Macdonald N. Mavrova-Guirguinova M. Mediero L. Merz R. Molnar P. Montanari A. Murphy C. Osuch M. Ovcharuk V. Radevski I. Rogger M. Salinas J.L. Sauquet E. Šraj M. Szolgay J. Viglione A. Volpi E. Wilson D. Zaimi K. Živković N. 2017. Changing climate shifts timing of European floods. Science 357 6351 588-590. DOI: 10.1126/science.aan2506.

  • Ceola S. Arheimer B. Baratti E. Blöschl G. Capell R. Castellarin A. Freer J. Han D. Hrachowitz M. Hundecha Y. Hutton C. Lindström G. Montanari A. Nijzink R. Parajka J. Toth E. Viglione A. Wagener T. 2015. Virtual laboratories: new opportunities for collaborative water science. Hydrol. Earth Syst. Sci. 19 2101-2117. DOI: 10.5194/hess-19-2101-2015.

  • Chapman T. 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes 13 5 701-714.

  • Clow D.W. 2010. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. Journal of Climate 23 2293-2306. https://doi.org/10.1175/2009JCLI2951.1.

  • Collins D.N. 1998. Rainfall-induced high-magnitude runoff events in highly-glacierized Alpine basins. In: Proceedings of the HeadWater'98 Conference on Hydrology Water Resources and Ecology in Headwaters (Meran/Merano Italy April 1998). IAHS Publ. no. 248 pp. 69-78.

  • Déry S.J. Salomonson V.V. Stieglitz M. Hall D.K. Appel I. 2005. An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska. Hydrological Processes 19 2755-2774. DOI: 10.1002/hyp.5784.

  • Dietz A.J. Wohner Ch. Kuenzer C. 2012. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sensing 4 8 2432-2454. DOI: 10.3390/rs4082432.

  • Gascoin S. Hagolle O. Huc M. Jarlan L. Dejoux J.-F. Szczypta C. Marti R. Sánchez R. 2015. A snow cover climatology for the Pyrenees from MODIS snow products.

  • Hydrol. Earth Syst. Sci. 19 2337-2351. Hall D.K. Riggs G.A. 2016. MODIS/Terra Snow Cover Daily L3 Global 500m Grid Version 6. [Indicate subset used]. Boulder Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. DOI: http://dx.doi.org/10.5067/MODIS/MOD10A1.006. [Date Accessed].

  • Krajčí P. Holko L. Perdigão R.A.P. Parajka J. 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. Journal of Hydrology 519 1769-1778.

  • Li B. Zhu A.-X. Zhou C. Zhang Y. Pei T. Qin C. 2008. Automatic mapping of snow cover depletion curves using optical remote sensing data under conditions of frequent cloud cover and temporary snow. Hydrol. Process. 22 2930-2942. DOI: 10.1002/hyp.6891.

  • Mangini W. Viglione A. Hall J. Hundecha Y. Ceola S. Montanari A. Rogger M. Salinas J.L. Borzì I. Parajka J. 2018. Detection of trends in magnitude and frequency of flood peaks across Europe Hydrological Science Journal https://doi.org/10.1080/02626667.2018.1444766. (In press).

  • Merz R. Blöschl G. 2003. A process typology of regional floods. Water Resources Research 39 12 39 1340. DOI: 10.1029/2002WR001952 12.

  • Mioduszewski J.R. Rennermalm A.K. Robinson D.A. Mote T.L. 2014. Attribution of snowmelt onset in Northern Canada.

  • J. Geophys. Res. Atmos. 119 9638-9653. DOI: 10.1002/ 2013JD021024. Parajka J. 2017. Catalogue of identified flood peaks from GRDC dataset (FLOOD TYPE experiment). DOI: 10.5281/zenodo.581436.

  • Parajka J. Blöschl G. 2006. Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences 10 679-689.

  • Parajka J. Blöschl G. 2012. MODIS-based snow cover products validation and hydrologic applications. In: Chang N.B. Hong Y. (Eds.): Multiscale Hydrologic Remote Sensing: Perspectives and Applications. CRC Press Taylor & Francis Group Boca Raton Florida USA pp. 185-212.

  • Parajka J. Holko L. Kostka Z. Blöschl G. 2012. MODIS snow cover mapping accuracy in a small mountain catchment - comparison between open and forest sites. Hydrology and Earth System Sciences 16 2365-2377.

  • Paudel K.P. Andersen P. 2011. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ. 115 5 1234-1246.

  • Riboust P. Thirel G. Le Moine N. Ribstein P. 2019. Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. Journal of Hydrology and Hydromechanics 67 70-81.

  • Thomas B.F. Vogel R.M. Kroll C.N. Famiglietti J.S. 2013. Estimation of the base flow recession constant under human interference. Water Resources Research 49 7366-7379. DOI: 10.1002/wrcr.20532.

  • Vogel R.M. Kroll C.N. 1996. Estimation of baseflow recession constants. Water Resources Management 10 303-320.

  • Wang X. Xie H. Liang T. Huang X. 2009. Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang China. Hydrol. Process. 23 3 419-429.

  • Wang W. Huang X. Deng J. Xie H. Liang T. 2015. Spatio-temporal change of snow cover and its response to climate over the Tibetan plateau based on an improved daily cloud-free snow cover product. Remote Sens. 7 1 169-194.

  • Xinghua L Wenxuan F. Huanfeng S. Chunlin H. Liangpei Z. 2017. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method. Journal of Hydrology 551 314-327.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 2.023
5-year IMPACT FACTOR: 2.048

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7745 7733 31
PDF Downloads 491 478 16