Cite

Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snowdominated regions. Nature, 438, 7066, 303-309.10.1038/nature04141Search in Google Scholar

Barnhart, T.B., Molotch, N.P., Livneh, B., Harpold, A.A., Knowles, J.F., Schneider, D., 2016. Snowmelt rate dictates streamflow. Geophys. Res. Lett., 43, 8006-8016.10.1002/2016GL069690Open DOISearch in Google Scholar

Berghuijs, W.R., Woods, R.A., Hrachowitz, M., 2014. A precipita tion shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change, 4, 583-586.10.1038/nclimate2246Search in Google Scholar

Egli, L., Jonas, T., 2009. Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps. Geophysical Research Letters, 36, 5 p. http://doi.org/10.1029/2008GL03554510.1029/2008GL035545Open DOISearch in Google Scholar

Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E., Boone, A., Dai, Y.-J., Essery, R., Fernandey, A., Gusey, Y., Jordan, R., Koren, V., Kowalczyk, E., Pyles, R.D., Schlosser, A., Shmakin, A.B., Smirnova, T.G., Strasser, U., Verseghy, D., Yamakazi, T., Yang, Z.-L., 2002. SNOWMIP, an intercomparison of snow models: comparison of simulated and observed internal state International. In: Proceedings of the International snow science workshop, Penticton, Canada, 29 Sep.-4 Oct. 2002, pp. 353-360.Search in Google Scholar

Fraser, B., 2012. Melting in the Andes: Goodbye glaciers. Nature. 491, 180-182. DOI: 10.1038/491180a.10.1038/491180aOpen DOISearch in Google Scholar

Godsey, S.E., Kirchner, J.W., Tague, C.L., 2014. Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA. Hydrol. Process., 28, 5048-5064. DOI: 10.1002/hyp.9943.10.1002/hyp.9943Open DOISearch in Google Scholar

Gurtz, J., Baltensweiler, A., Lang, H., 1999. Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins. Hydrol. Processes, 13, 2751-2768.10.1002/(SICI)1099-1085(19991215)13:17<2751::AID-HYP897>3.0.CO;2-OSearch in Google Scholar

Hegg, C., McArdell, B.W., Badoux, A., 2006. One hundred years of mountain hydrology in Switzerland by the WSL. Hydrol. Process., 20, 371-376. DOI: 10.1002/hyp.6055.10.1002/hyp.6055Open DOISearch in Google Scholar

Hock, R., 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282, 1-4, 104-115.10.1016/S0022-1694(03)00257-9Search in Google Scholar

Jasechko, S., Birks, S.J., Gleeson, T., Wada, Y., Fawcett, P.J., Sharp, Z.D., McDonnell, J.J., Welker, J.M., 2014. The pronounced seasonality of global groundwater recharge. Water Resour. Res., 50, 8845-8867.10.1002/2014WR015809Open DOISearch in Google Scholar

Jenicek, M., Seibert, J., Zappa, M., Staudinger, M., Jonas, T., 2016. Importance of maximum snow accumulation for summer low flows in humid catchments. Hydrol. Earth Syst. Sci., 20, 859-874. DOI: 10.5194/hess-20-859-2016.10.5194/hess-20-859-2016Open DOISearch in Google Scholar

Kirnbauer, R., Bloschl, G., Gutknecht, D., 1994. Entering the era of distributed snow models. Nord. Hydrol., 25, 1-24.10.2166/nh.1994.0016Search in Google Scholar

Klemeš, V., 1990. The modelling of mountain hydrology: the ultimate challenge. In: Molar, L. (Ed.): Hydrology of Mountainous Areas. IAHS Press, Wallingford, Vol. 190, pp. 29-43.Search in Google Scholar

Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H., Zhang, T., 2007. Observations: Changes in Snow, Ice and Frozen Ground. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Search in Google Scholar

Mankin, J.S., Viviroli, D., Singh, D., Hoekstra, A.Y., Diffenbaugh, N.S., 2015. The potential for snow to supply human water demand in the present and future. Environmental Research Letters, 10, 11, 114016. DOI: 10.1088/1748-9326/10/11/114016.10.1088/1748-9326/10/11/114016Search in Google Scholar

Martinec, J., Rango, A., 1986. Parameter values for snowmelt runoff modelling. J. Hydrol., 84, 197-219.10.1016/0022-1694(86)90123-XOpen DOISearch in Google Scholar

Marty, C., Schlögl, S., Bavay, M., Lehning, M., 2017. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. The Cryosphere, 11, 517-529. https://doi.org/10.5194/tc-11-517-2017.10.5194/tc-11-517-2017Open DOISearch in Google Scholar

Melikadze, G., Kapanadze, N., Todadze, M., 2013.Assessment the role of snow in hydrological cycle of the Borjomula-Gudjareti- Tskali rivers basin. Journal of Georgian Geophysical Society, Phys. Solid Earth., 16a, 19-24.Search in Google Scholar

Parajka, J., Blöschl, G., 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 240-258. DOI: 10.1016/j.jhydrol.2008.06.006.10.1016/j.jhydrol.2008.06.006Open DOISearch in Google Scholar

Penna, D., Ahmad, M., Birks, S.J., Bouchaou, L., Brenčič, M., Butt, S., Holko, L., Jeelani, G., Martínez, D.E., Melikadze, G., Shanley, J.B., Sokratov, S.A., Stadnyk, T., Sugimoto, A., Vreča, P., 2014. A new method of snowmelt sampling for water stable isotopes. Hydrol. Process., 28, 5637-5644. DOI: 10.1002/hyp.10273.10.1002/hyp.10273Open DOISearch in Google Scholar

Pohl, S., Marsh, P., 2006. Modelling the spatial-temporal variability of spring snowmelt in an arctic catchment. Hydrol. Process., 20, 1773-1792. DOI: 10.1002/hyp.5955.10.1002/hyp.5955Open DOISearch in Google Scholar

Šanda, M., Vitvar, T., Kulasová, A., Jankovec, J., Císlerová, M., 2014. Runoff formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol. Process., 28, 3217-3229. DOI: 10.1002/hyp.9847.10.1002/hyp.9847Open DOISearch in Google Scholar

Thirel, G., Salamon, P., Burek, P., Kalas, M., 2013. Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter. Remote Sens., 5, 5825-5850.10.3390/rs5115825Search in Google Scholar

Van Loon, A.F., Ploum, S.F., Parajka, J., Fleig, A.K., Garnier, E., Laaha, G., Van Laanen, H.A.J., 2014. Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts. Hydrol. Earth Syst. Sci., 19, 1993-2016.10.5194/hess-19-1993-2015Open DOISearch in Google Scholar

Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., Zhang, T., 2013. Observations: Cryosphere In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth AssessmentReport of the Intergovernmental Panel on Change. Cambridge University Press, Cambridge, United Kingdomand New York, NY, USA.Search in Google Scholar

Viviroli, D., Archer, D.R., Buytaert, W., Fowler, H.J., Greenwood, G.B., Hamlet, A.F., Huang, Y., Koboltschnig, G., Litaor, I., López-Moreno, J.I., Lorentz, S., Schädler, B., Schreier, H., Schwaiger, K., Vuille, M., Woods, R., 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 15, 2, 471-504. DOI: 10.5194/hess-15-471-2011.10.5194/hess-15-471-2011Open DOISearch in Google Scholar

Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., Wong, W.K., 2016. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol., 538, 33-48. DOI:10.1016/j.jhydrol.2016.03.066.10.1016/j.jhydrol.2016.03.066Open DOISearch in Google Scholar

Zappa, M., Vitvar, T., Rücker, A., Melikadze, G., Bernhard, L., David, V., Jans-Singh, M., Zhukova, N., Sanda, M., 2015. A Tri-National program for estimating the link between snow resources and hydrological droughts. Proc. IAHS, 369, 25-30, DOI: 10.5194/piahs-369-25-2015.10.5194/piahs-369-25-2015Open DOISearch in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other