Factors controlling alterations in the performance of a runoff model in changing climate conditions

Open access

Abstract

In many Austrian catchments in recent decades an increase in the mean annual air temperature and precipitation has been observed, but only a small change in the mean annual runoff. The main objective of this paper is (1) to analyze alterations in the performance of a conceptual hydrological model when applied in changing climate conditions and (2) to assess the factors and model parameters that control these changes. A conceptual rainfall-runoff model (the TUW model) was calibrated and validated in 213 Austrian basins from 1981–2010. The changes in the runoff model’s efficiency have been compared with changes in the mean annual precipitation and air temperature and stratified for basins with dominant snowmelt and soil moisture processes. The results indicate that while the model’s efficiency in the calibration period has not changed over the decades, the values of the model’s parameters and hence the model’s performance (i.e., the volume error and the runoff model’s efficiency) in the validation period have changed. The changes in the model’s performance are greater in basins with a dominant soil moisture regime. For these basins, the average volume error which was not used in calibration has increased from 0% (in the calibration periods 1981–1990 or 2001–2010) to 9% (validation period 2001–2010) or –8% (validation period 1981–1990), respectively. In the snow-dominated basins, the model tends to slightly underestimate runoff volumes during its calibration (average volume error = –4%), but the changes in the validation periods are very small (i.e., the changes in the volume error are typically less than 1–2%). The model calibrated in a colder decade (e.g., 1981–1990) tends to overestimate the runoff in a warmer and wetter decade (e.g., 2001–2010), particularly in flatland basins. The opposite case (i.e., the use of parameters calibrated in a warmer decade for a colder, drier decade) indicates a tendency to underestimate runoff. A multidimensional analysis by regression trees showed that the change in the simulated runoff volume is clearly related to the change in precipitation, but the relationship is not linear in flatland basins. The main controlling factor of changes in simulated runoff volumes is the magnitude of the change in precipitation for both groups of basins. For basins with a dominant snowmelt runoff regime, the controlling factors are also the wetness of the basins and the mean annual precipitation. For basins with a soil moisture regime, landcover (forest) plays an important role.

Andréassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., Lavarbe, J., 2001. Impact of imperfect knowledge on the efficiency and the parameters of watershed models. Journal of Hydrology, 205, 1–4, 206–223. http://dx.doi.org/10.1016/S0022-1694(01)00437-1.

Ardia, D., Mullen, K.M., Peterson, B.G., Ulrich, J., 2015. DE-optim: Diferential evolution in R. Version 2.2-3.

Bai, P., Liu, X., Liang, K., Liu, C., 2015. Comparison of performance of twelve monthly water balance models in different climatic catchments of China. Journal of Hydrology, 529, 1030–1040. DOI: 10.1016/j.jhydrol.2015.09.015.

Bergström, S., 1995. The HBV model. In: Sing, V.P. (Ed.): Computers Models of Watershed Hydrology. Water. Resour. Publ., pp. 443–476.

Beven, K.J., 2005. Rainfall-runoff modelling: Introduction. In: Anderson, M.G. (Ed): Encyclopedia of Hydrological Sciences, Wiley, Chichester, pp. 1857–1868.

Brath, A., Montanari, A., Toth, E., 2004. Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model. Journal of Hydrology, 291, 3–4, 232–253. http://dx.doi.org/10.1016/j.jhydrol.2003.12.044.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and Regression Trees. The Wadsworth and Brooks-Cole Statistics-Probability Series. Taylor & Francis, 368 p. ISBN: 0412048418, 9780412048418.

Brigode, P., Oudin, L., Perrin, C., 2013. Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? Journal of Hydrology, 476, 410–425. http://dx.doi.org/10.1016/j.jhydrol.2012.11.012.

Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., and Wagener, T., 2015. Virtual laboratories: new opportunities for collaborative water science. Hydrol. Earth Syst. Sci., 19, 2101–2117. DOI: 10.5194/hess-19-2101-2015.

Chiew, F.H.S., Teng, J., Vaze, J., Post, D.A., Perraud, J.M., Kirono, D.G.C., Viney, N.R., 2009. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method, Water Re-sour. Res., 45, W10414. DOI: 10.1029/2008WR007338.

Coron, L., Andréassian, V., Bourqui, M., Perrin, C., Hendrickx, F., 2011. Pathologies of hydrological model used in changing climatic conditions: a review. Hydro-climatology: Variability and change. In: Proceedings of IUGG2011 symposium J-H02, Melbourne, Australia.

Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., Hendrickx, F., 2012. Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resour. Res., 48, W05552. DOI: 10.1029/2011WR011721.

Coron, L., Andréassan, V., Perrin, C., Bourqui, M., Hendrickx, F., 2014. On the lack of robustness of hydrologic models regarding water balance simulation: a diagnostic approach applied to three models of increasing complexity on 20 mountainous catchments. Hydrol. Earth Syst. Sci., 18, 727–746. DOI: 10.5194/hess-18-727-2014.

Das, T., Bárdossy, A., Zehe, E., He, Y., 2008. Comparison of conceptual model performance using different representations of spatial variability. J. Hydrol., 356, 106–118.

Farkas, C., Kværnø, S.H., Engebretsen, A., Barneveld, R., Deelstra, J., 2016. Applying profile and catchment-based mathematical models for evaluating the run-off from a Nordic catchment. J. Hydrol. Hydromech., 64, 3, 218–225. DOI: 10.1515/johh-2016-0022.

Fenicia, F., Kavetski, D., Savenije, H.H.G., 2011. Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resour. Res., 47, W11510. DOI: 10.1029/2010wr010174.

Finger, D., Heinrich, G., Gobiet, A., Bauder, A., 2012. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour. Res., 48, 02521. DOI: 10.1029/2011WR010733, 2012.

Fowler, K.J.A., Peel, M.C., Western, A.W., Zhang, L., Peterson, T.J., 2016. Simulating runoff under changing climate conditions: Revising an apparent deficiency of conceptual rainfall-runoff models. Water. Resour. Res., 52, 1820–1846. DOI: 10.1002/2015WR018068.

Gaál, L., Szolgay, J., Kohnová, S., Parajka, J., Merz, R., Viglione, A., Blöschl, G., 2012. Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour. Res., 48, W04511. DOI: 10.1029/2011WR011509.

Iorgulescu, I., Beven, K.J., 2004. Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling? Water Resour. Res., 40, W08403. DOI: 10.1029/2004WR003094.

Klemeš, V., 1986. Dilettantism in hydrology: Transition or destiny? Water Resour. Res., 22, 9, 177–188.

Kuentz, A., Arheimer, B., Hundecha, Y., Wagener, T., 2016. Understanding hydrologic variability across Europe through catchment classification. Hydrol. Earth Syst. Sci. Discuss., 21, 6, 1–28. DOI: 10.5194/hess-2016-428.

Magand, C., Ducharne, A., Le Moine, N., Brigode, P., 2015. Parameter transferability under changing climate: case study with a land surface model in the Durance watershed, France. Hydrological Sciences Journal, 60, 7–8, 1408–1423. DOI: 10.1080/02626667.2014.993643.

Merz, R., Blöschl, G., 2004. Regionalisation of catchment model parameters. Journal of Hydrology. 27, 95–123. DOI: 10.1002/hyp.6253.

Merz, R., Blöschl, G., Parajka, J., 2009. Scale effects in conceptual hydrological modelling. Water Resour. Res., 45, W09405. DOI: 10.1029/2009WR007872.

Merz, R., Parajka, J., Blöschl, G., 2011. Time stability of catchment model parameters: Implications for climate impact analyses. Water. Resour. Res., 47, 1015–1031. DOI: 10.1029/2010WR009505.

Nash, J.E. Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I-A discussion of principles, Journal of Hydrology, 10, 3, 282–290. DOI: 10.1016/0022-1694(70)90255-6.

Nester, T., Kirnbauer, R., Gutknecht, D., Blöschl, G., 2011. Climate and catchment controls on the performance of regional flood simulations. Journal of Hydrology, 340–356. http://dx.doi.org/10.1016/j.jhydrol.2011.03.028.

Nester, T., Komma, J., Blöschl, G., 2016. Real time forecasting in the Upper Danube basin. J. Hydrol. Hydromech., 64, 4, 404–414. DOI: 10.1515/johh-2016-0033.

Nijzink, R.C., Samaniego, L., Mai, J., Kumar, R., Thober, S., Zink, M., Schäfer, D., Savenije, H.H.G., Hrachowitz, M., 2016. The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models. Hydrol. Earth Syst. Sci., 20, 1151–1176. DOI:10.5194/hess-20-1151-2016.

Osuch, M., Romanowicz, R.J., Booij, M.J., 2015. The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics. Hydrological Sciences Journal, 60, 7–8, 1299–1316. DOI: 10.1080/02626667.2014.967694.

Oudin, L., Perrin, C., Mathevet, T., Andréassian, V., and Michel, C., 2006. Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. J. Hydrol., 320, 1–2, 62–83. DOI: 10.1016/j.jhydrol.2005.07.016.

Parajka, J., Blöschl, G., 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology, 358, 3–4, 240–258. https://doi.org/10.1016/j.jhydrol.2008.06.006.

Parajka, J., Merz, R., Blöschl, G., 2005. A comparison of regionalisation methods for catchment model parameters. Hydrol. Earth Syst. Sci., 9, 157–171. DOI: 10.5194/hess-9-157-2005.

Parajka, J., Merz, R., Blöschl, G., 2007. Uncertainty and multiple calibration in regional water balance modelling case study in 320 Austrian catchments. Hydrol. Process, 21, 435–446. DOI: 10.1002/hyp.6253.

Pechlivanidis, I.G., Arheimer, B., 2015. Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrol. Earth Syst. Sci., 19, 4559–4579. DOI: 10.5194/hess-19-4559-2015.

Pebesma, E.J., 2001. Gstat User’s Manual. Dep. of Phys. Geogr., Utrecht Univ., Utrecht, The Netherlands.

Perrin, C., Michel, C., Andréassian, V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol., 242, 275–301. https://doi.org/10.1016/S0022-1694(00)00393-0.

Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. J. Hydrol., 279, 275–289. DOI: 10.1016/s0022-1694(03)00225-7. Perrin, C., Oudin, L., Andréassian, V., Rojas-Serna, C., Michel, C., Mathevet, T., 2007. Impact of limited streamflow data on the efficiency and the parameters of rainfall-runoff models. Hydrol. Sci. J., 52, 1, 131. http://dx.doi.org/10.1623/hysj.52.1.131.

Perrin, C., Andréassian, V., Rojas-Serna, C., Mathevet, T., Le Moine, N., 2008. Discrete parameterization of hydrological models: Evaluating the use of parameter sets libraries over 900 catchments. Water Resour. Res., 44, W08447. DOI: 10.1029/2007WR006579.

Poncelet, C., Merz, R., Parajka, J., Oudin, L., Andréassian, V., Perrin, C., 2017. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set. Water Resource Research. DOI: 10.1002/2016WR019991.

R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Saft, M., Western, A.W., Zhang, L., Peel, M.C., Potter, N.J., 2015. The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective. Water Re-sour. Res., 51, 2444–2463. DOI: 10.1002/2014WR015348.

Saft, M., Peel, M.C., Western, A.W., Zhang, L., 2016. Predicting shifts in rainfall-runoff partitioning during multiyear drought: Roles of dry period and catchment characteristics. Water Resour. Res., 52. DOI: 10.1002/2016WR019525.

Schaefli, B. Gupta, H.V., 2007. Do Nash values have value? Hydrol. Process., 21, 2075–2080. DOI: 10.1002/hyp.6825. Seibert, J., 2003. Reliability of model predictions outside calibration conditions. Nordic Hydrology, 34, 477–492.

Seibert, M., Merz, B., Apel, H., 2016. Seasonal forecasting of hydrological drought in the Limpopo basin: A comparison of statistical methods. Hydrol. Earth Syst. Sci. Discuss. DOI: 10.5194/hess-2016-4, 2016.

Seifert, D., Sonnenborg, T.O., Refsgaard, J.C., Højberg, A.L., Troldborg, L., 2012. Assessment of hydrological model predictive ability given multiple conceptual geological models. Water Resour. Res., 48, W06503. DOI: 10.1029/2011WR011149.

Seiler, G., Anctil, F., Perrin, C., 2012. Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions. Hydrol. Earth Syst. Sci., 16, 4, 1171–1189. http://dx.doi.org/10.5194/hess-16-1171-2012.

Sleziak, P., Szolgay, J., Hlavčová, K., Parajka, J., 2016a. The impact of the variability of precipitation and temperatures on the efficiency of a conceptual rainfall-runoff model. Slovak Journal of Civil Engineering, 24, 4, 1–7. DOI: 10.1515/sjce-2016-0016.

Sleziak, P., Szolgay, J., Hlavčová, K., Parajka, J., 2016b. Assessment of the performance of a hydrological model in relation to selected climatic characteristics. In: Proc. 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Book 3 Vol. 3, pp. 43–52. DOI: 10.5593/SGEM2016/HB33/S02.006.

Stauer, J.J., Stensvold, K.A., Gregory, M.B., 2010. Determination of biologically significant hydrologic condition metrics in urbanizing watersheds: an empirical analysis over a range of environmental settings. Hydrobiologia, 654, 1, 27–55. DOI: 10.1007/s10750-010-0362-0.

Sun, W., Wang, Y., Wang, G., Cui, X., Yu, J., Zuo, D., Xu, Z., 2017. Physically based distributed hydrological model calibration based on a short period of streamflow data: case studies in four Chinese basins. Hydrol. Earth Syst. Sci., 21, 251–265. DOI: 10.5194/hess-21-251-2017.

Therneau, T., Atkinson, B., Ripley, B., 2017. Recursive partitioning and regression trees. Version 4.1-11.

van Esse, W.R., Perrin, C., Booij, M.J., Augustijn, D.C.M., Fenicia, F., Kavetski, D., Lobligeois, F., 2013. The influence of conceptual model structure on model performance: a comparative study from 273 French catchments. Hydrol. Earth Syst. Sci., 17, 4227–4239. DOI: 10.5194/hess-17-4227-2013.

van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., Srinivasan, R., 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324, 10–23.

Valent, P., Szolgay, J., 2012. Assessment of the uncertainties of a conceptual hydrologic model by using artificially generated flows. Slovak Journal of Civil Engineering, 20, 4, 35–43. DOI: https://doi.org/10.2478/v10189-012-0020-9.

Vaze, J., Post, D.A., Chiew, F.H.S., Perraud, J.M., Viney, N.R., Teng, J., 2010. Climate nonstationarity – Validity of calibrated rainfall-runoff models for use in climatic changes studies. J. Hydrol., 394, 3–4, 447–457. DOI: 10.1016/j.jhydrol.2010.09.018.

Viglione, A., Parajka, J., Rogger, M., Salinas, J.L., Laaha, G., Sivapalan, M., Blöschl, G., 2013. Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria. Hydrol. Earth Syst. Sci., 17, 2263–2279. DOI: 10.5194/hess-17-2263-2013.

Viglione, A., Parajka, J., 2014. TUWmodel: Lumped hydrological model for educational purposes. Version 0.1-4. https://cran.r-project.org/web/packages/TUWmodel/index.html.

Viviroli, D., Zappa, M., Schwanbeck, J., Gurtz, J., Weingartner, R., 2009. Continuous simulation for flood estimation in un-gauged mesoscale catchments of Switzerland – Part I: Modelling framework and calibration results. Journal of Hydro-logy, 377, 191–207. https://doi.org/10.1016/j.jhydrol. 2009.08.023.

Wang-Erlandsson, L., Bastiaanssen, W.G.M., Gao, H., Jager-meyer, J., Senay, G.B., van Dijk, A.I.J.M., Guerschman, J.P., Keys, P.W., Gordon, L.J., Savenije, H.H.G., 2016. Global root zone sorage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci., 20, 1459–1481. www.hydrol-earth-syst-sci.net/20/1459/2016/.

Wilby, R.L., 2005. Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Processes, 19, 16, 3201–3219.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2018: 2,023
5-year IMPACT FACTOR: 2,048



CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 328 79
PDF Downloads 183 183 26