Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW

Open access

Abstract

The paper presents an evaluation of the combined use of the HYDRUS and SWI2 packages for MODFLOW as a potential tool for modeling recharge in coastal aquifers subject to saltwater intrusion. The HYDRUS package for MODFLOW solves numerically the one-dimensional form of the Richards equation describing water flow in variablysaturated media. The code computes groundwater recharge to or capillary rise from the groundwater table while considering weather, vegetation, and soil hydraulic property data. The SWI2 package represents in a simplified way variable-density flow associated with saltwater intrusion in coastal aquifers. Combining these two packages within the MODFLOW framework provides a more accurate description of vadose zone processes in subsurface systems with shallow aquifers, which strongly depend upon infiltration. The two packages were applied to a two-dimensional problem of recharge of a freshwater lens in a sandy peninsula, which is a typical geomorphologic form along the Baltic and the North Sea coasts, among other places. Results highlighted the sensitivity of calculated recharge rates to the temporal resolution of weather data. Using daily values of precipitation and potential evapotranspiration produced average recharge rates more than 20% larger than those obtained with weekly or monthly averaged weather data, leading to different trends in the evolution of freshwater-saltwater interfaces. Root water uptake significantly influenced both the recharge rate and the position of the freshwater-saltwater interface. The results were less sensitive to changes in soil hydraulic parameters, which in our study were found to affect average yearly recharge rates by up to 13%.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bailey R.T. Morway E.D. Niswonger R.G. Gates T.K. 2013. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D. Ground Water 51 5 752–761. DOI: 10.1002/ird.1699.

  • Bakker M. Schaars F. Hughes J.D. Langevin C.D. Dausman A.M. 2013. Documentation of the seawater intrusion (SWI2) package for MODFLOW. USGS Numbered Series “Techniques and Methods” 6-A46. US Geol. Survey Reston VA USA.

  • Batalha M.S. Barbosa M.C. Faybishenko B. van Genuchten M.Th. 2018. Effect of temporal averaging of meteorological data on predictions of groundwater recharge. Journal of Hydrology and Hydrodynamics 66 2 143–152.

  • Beegum S. Šimůnek J. Szymkiewicz A. Sudheer K.P. Nambi I.M. 2018. Implementation of solute transport in the vadose zone into the ‘HYDRUS package for MODFLOW’. Groundwater (under review).

  • Carsel R.F. Parrish R.S. 1988. Developing joint probability distributions of soil water retention characteristics. Water Resources Research 24 5 755–769.

  • Chang S.W. Nemec K. Kalin L. Clement T.P. 2016. Impacts of climate change and urbanization on groundwater resources in a barrier island. Journal of Environmental Engineering D4016001.

  • Comte J.C. Join J.L. Banton O. Nicolini E. 2014. Modelling the response of fresh groundwater to climate and vegetation changes in coral islands. Hydrogeology Journal 22 8 1905–1920.

  • Contractor D.N. Jenson J.W. 2000. Simulated effect of vadose infiltration on water levels in the Northern Guam Lens Aquifer. Journal of Hydrology 229 3 232–254.

  • Dan H.C. Xin P. Li L. Li L. Lockington D. 2012. Capillary effect on flow in the drainage layer of highway pavement. Canadian Journal of Civil Engineering 39 6 654–666.

  • Dausman A. Langevin C. Bakker M. Schaars F. 2010. A comparison between SWI and SEAWAT – the importance of dispersion inversion and vertical anisotropy. In: Proceedings of the 21st Salt Water Intrusion Meeting Azores Portugal.

  • De Louw P.G. Eeman S. Siemon B. Voortman B.R. Gunnink J. Van Baaren E.S. Oude Essink G. 2011. Shallow rainwater lenses in deltaic areas with saline seepage. Hydrology and Earth System Sciences 15 3659–3678.

  • Dyck S. Chardabellas P. 1963. Wege zur Ermittlung der nutzbaren Grundwasserreserven. Ber. Geol. Ges. DDR 8 245–262.

  • Eeman S. Zee S.V.D. Leijnse A. De Louw P.G.B. Maas C. 2012. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater. Hydrology and Earth System Sciences 16 10 3535–3549.

  • Eeman S. De Louw P.G.B. Van der Zee S.E.A.T. M. 2017. Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater. Hydrogeology Journal 25 1 223–241.

  • Feddes R.A. Kowalik P.J. Zaradny H. 1978. Simulation of Field Water Use and Crop Yield. John Wiley & Sons New York NY.

  • Foussereau X. Graham W.D. Akpoji G.A. Destouni G. Rao P.S.C. 2001. Solute transport through a heterogeneous coupled vadose-saturated zone system with temporally random rainfall. Water Resources Research 37 6 1577–1588.

  • Freeze R.A. Cherry J.A. 1979. Groundwater. Prentice Hall.

  • Grabarczyk S. Żarski J. 1992. Próba statystycznej weryfikacji niektórych wzorów określających ewapotranspirację potencjalną. [An attempt at statistical verification of selected formulae estimating potential evapotranspiration.] Zeszyty Naukowe Akademii Techniczno Rolniczej w Bydgoszczy (Rolnictwo). (in Polish.)

  • Hanson R. Boyce S. Schmid W. Hughes J. Mehl S. Leake S. Maddock III Th. Niswonger R. 2014. One-Water Hydrologic Flow Model (MODFLOW–OWHM) Techniques and Methods 6-A51. US Geological Survey Reston VA USA. Available from: http://dx. DOI: org/10.3133/tm6A51.

  • Harbaugh A.W. 2005. MODFLOW-2005 the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior US Geological Survey Reston VA USA pp. 6-A16.

  • Healy R.W. 2008. Simulating water solute and heat transport in the subsurface with the VS2DI software package. Vadose Zone Journal 7 632–639.

  • Healy R.W. 2010. Estimating Groundwater Recharge. Cambridge University Press Cambridge UK 245 p.

  • Holding S. Allen D.M. 2015. From days to decades: numerical modelling of freshwater lens response to climate change stressors on small low-lying islands. Hydrology and Earth System Sciences 19 2 933–949.

  • Hölting B. Coldewey W.G. 2013. Hydrogeologie: Einführung in die allgemeine und angewandte Hydrogeologie. Springer-Verlag.

  • Houben G. Post V.E.A. 2016. How long does the recovery of a freshwater lens take after a massive saltwater inundation? Experiences from the island of Baltrum Germany after the 1962 flood disaster. In: Proceedings of 24th Salt Water Intrusion Meeting and the 4th Asia-Pacific Coastal Aquifer Management Meeting 4–8 July 2016 Cairns Australia.

  • Hsieh P.A. Wingle A.W. Healy R.W. 1999. VS2DI: A graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. USGS Water-Resources Investigation Report 99-4130. US Geological Survey Reston USA.

  • Huang M. Barbour S.L. Elshorbagy A. Zettl J.D. Si B.C. 2011. Water availability and forest growth in coarse-textured soils. Canadian Journal of Soil Science 91 2 199–210.

  • Hunt R.J. Prudic D.E. Walker J.F. Anderson M.P. 2008. Importance of unsaturated zone flow for simulating recharge in a humid climate. Ground Water 46 4 551–560.

  • Illangasekare T. Tyler S.W. Clement T.P. Villholth K.G. Perera A.P.G.R.L. Obeysekera J. Gunatilaka A. Panabokke C.R Hyndman D.W. Cunningham K.J. Kaluarachchi J.J. Yeh W.W-G. van Genuchten M.Th. Jensen K. 2006. Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour. Res. 42 W05201. DOI: 10.1029/2006WR004876.

  • Jocson J.M. U. Jenson J.W. Contractor D.N. 2002. Recharge and aquifer response: northern Guam lens aquifer Guam Mariana Islands. Journal of Hydrology 260 1 231–254.

  • Kamps P.W.J.T. Nienhuis P. Witte J.P.M. 2008. Effects of climate change on the water table in the coastal dunes of the Amsterdam Water Supply. In: Proceedings MODFLOW.

  • Leterme B. Gedeon M. Jacques D. 2013. Groundwater recharge modeling of the Nete catchment (Belgium) using the HYDRUS 1D - MODFLOW package. In: Šimůnek J. M.Th. van Genuchten Kodešová R. (Eds.): Proc. of the 4th International Conference “HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems Prague Czech Republic pp. 235–244. ISBN: 978-80-213-2380-3

  • Leterme B. Gedeon M. Laloy E. Rogiers B. 2015. Unsaturated flow modeling with HYDRUS and UZF: calibration and intercomparison. In: Proc. MODFLOW and More 2015. Integrated GroundWater Modeling Center May 31–June 3 2015 Golden CO.

  • Luoma S. Okkonen J. 2014. Impacts of future climate change and Baltic Sea level rise on groundwater recharge groundwater levels and surface leakage in the Hanko aquifer in southern Finland. Water 6 12 3671–3700.

  • Mahmoodzadeh D. Ketabchi H. Ataie-Ashtiani B. Simmons C.T. 2014. Conceptualization of a fresh groundwater lens influenced by climate change: A modeling study of an arid-region island in the Persian Gulf Iran. Journal of Hydrology 519 399–413.

  • Meyer P.D. Rockhold M.L. Gee G.W. 1997. Uncertainty analyses of infiltration and subsurface flow and transport for SDMP sites. Rep. NUREG/CR-6565 PNNL-11705. U.S. Nuclear Regulatory Commission Washington DC.

  • Mollema P.N. Antonellini M. 2013. Seasonal variation in natural recharge of coastal aquifers. Hydrogeology Journal 21 4 787–797.

  • Neitsch S.L. Williams J.R. Arnold J.G. Kiniry J.R. 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute College Station TX.

  • Neuman S.P. Feddes R.A. Bresler E. 1974. Finite element simulation of flow in saturated-unsaturated soils considering water uptake by plants. Third Annual Report Project No. A10-SWC-77. Hydraulic Engineering Lab. Technion Haifa Israel.

  • Niswonger R.G. Prudic D.E. Regan R.S. 2006. Documentation of the unsaturated-zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005 (No. 6-A19).

  • Oude Essink G.H.P. Van Baaren E.S. De Louw P.G. 2010. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resources Research 46 10.

  • Persson M. Saifadeen A. 2016. Effects of hysteresis rainfall dynamics and temporal resolution of rainfall input data in solute transport modelling in uncropped soil. Hydrological Sciences Journal 61 5 982–990.

  • Prieto C. Kotronarou A. Destouni G. 2006. The influence of temporal hydrological randomness on seawater intrusion in coastal aquifers. Journal of Hydrology 330 1 285–300.

  • Sadurski A. Borawska J. Burczyk T. 1987. Warunki hydrogeologiczne i hydrochemiczne Mierzei Helskiej [Hydrogeological and hydrochemical conditions of Hel Peninsula.] Kwartalnik Geologiczny 31 4 767–782. (In Polish.)

  • Scanlon B.R. Christman M. Reedy R.C. Porro I. Šimůnek J. Flerchinger G.N. 2002. Intercode comparisons for simulating water balance of surficial sediments in semiarid regions. Water Resources Research 38 12 1323. DOI: 10.1029/2001WR001233.

  • Schroeder P.R. Dozier T.S. Zappi P.A. McEnroe B.M. Sjostrom J.W. Peton R.L. 1994. The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3 EPA/600/R-94/168b. US. Environmental Protection Agency Risk Reduction Engineering Laboratory Cincinnati.

  • Seo H.S. Šimůnek J. Poeter E. 2007. Documentation of the HYDRUS Package for MODFLOW-2000 the U.S. Geological Survey Modular Ground-Water Model GWMI 2007-01. International Ground Water Modeling Center Colorado School of Mines Golden Colorado 96 p.

  • Šimůnek J. Jarvis N. J. van Genuchten M.Th. Gärdenäs A. 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology 272 1 14–35.

  • Šimůnek J. Šejna M. Saito H. Sakai M. van Genuchten M.Th. 2008a. The HYDRUS-1D software package for simulating the one-dimensional movement of water heat and multiple solutes in variably-saturated media Version 4.0. HYDRUS Software Series 3. Department of Environmental Sciences University of California Riverside CA USA 315 p.

  • Šimůnek J. van Genuchten M.Th. Šejna M. 2008b. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal 7 2 587–600.

  • Šimůnek J. van Genuchten M.Th. Šejna M. 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal 15 7 25 p. DOI: 10.2136/vzj2016.04.0033.

  • Sinclair P. Galvis S.C. Bosserelle A.L. Post V.E.A. Werner A. 2016. Sustainability of freshwater lenses in atoll environments. In: Proceedings of 24th Salt Water Intrusion Meeting and the 4th Asia-Pacific Coastal Aquifer Management Meeting 4–8 July 2016 Cairns Australia.

  • Smerdon B.D. Mendoza C.A. Devito K.J. 2008. Influence of subhumid climate and water table depth on groundwater recharge in shallow outwash aquifers. Water Resources Research 44 W08427.

  • Stuyfzand P.J. 2016. Formation and hydrogeochemistry of a freshwater lens on a sandbar island in saltwater lake Grevelingen Netherlands. In: Proceedings of 24th Salt Water Intrusion Meeting and the 4th Asia-Pacific Coastal Aquifer Management Meeting 4–8 July 2016 Cairns Australia.

  • Sulzbacher H. Wiederhold H. Siemon B. Grinat M. Igel J. Burschil T. Günther T. Hinsby K. 2012. Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods. Hydrology and Earth System Sciences 16 10 3621–3643.

  • Szymańska P. Tisler W. Schütz C. Szymkiewicz A. Neuweiler I. Helmig R. 2016. Experimental and numerical analysis of air trapping in a porous medium with coarse textured inclusions. Acta Geophysica 64 6 2487–2509.

  • Therrien R. McLaren R. G. Sudicky E. A. Panday S. M. 2010. HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group University of Waterloo Waterloo ON.

  • Thoms R.B. Johnson R.L. Healy R.W. 2006. User’s guide to the Variably Saturated Flow (VSF) process for MODFLOW. Techniques and Methods 6-A18. US Geological Survey Reston VA.

  • Trglavcnik V. Robinson C. Morrow D. White D. Paquin V. Weber K. 2016. Effect of tides waves and precipitation on groundwater flow dynamics on Sable Island Canada. In: Proceedings of 24th Salt Water Intrusion Meeting and the 4th Asia-Pacific Coastal Aquifer Management Meeting 4–8 July 2016 Cairns Australia.

  • Twarakavi N.K.C. Šimůnek J. Seo H.S. 2008. Evaluating interactions between groundwater and vadose zone using HYDRUS-based flow package for MODFLOW. Vadose Zone Journal 7 2 757–768.

  • Vandenbohede A. Mollema P.N. Greggio N. Antonellini M. 2014. Seasonal dynamic of a shallow freshwater lens due to irrigation in the coastal plain of Ravenna Italy. Hydrogeology Journal 22 4 893–909.

  • Vero S.E. Ibrahim T. G. Creamer R. E. Grant J. Healy M. G. Henry T. Kramers G. Richards K.G. Fenton O. 2014. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. Journal of Contaminant Hydrology 170 53–67.

  • Verruijt A. 1968. A note on the Ghyben-Herzbeg formula. International Association of Scientific Hydrology Bulletin 13 4 43–46. DOI: 10.1080/02626666809493624.

  • Voss C.I. Provost A.M. 2010. SUTRA: A model for saturated-unsaturated variable-density groundwater flow with solute or energy transport. USGS Water-Resources Investigations Report 02-4231 U.S. Geological Survey Reston VA

  • Werner A.D. Lockinton D.A. 2004. The potential for soil salinization above aquifers influenced by seawater intrusion. In: Proc. 13th International Soil Conservation Conference Brisbane paper No. 790.

  • Werner A.D. Bakker M. Post V.E. Vandenbohede A. Lu C. Ataie-Ashtiani B. Simmons C.T. Barry D.A. 2013. Seawater intrusion processes investigation and management: recent advances and future challenges. Advances in Water Resources 51 3–26.

  • Winston R.B. 2009. ModelMuse: a graphical user interface for MODFLOW-2005 and PHAST. US Geological Survey Reston VA.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 2.023
5-year IMPACT FACTOR: 2.048

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1120 316 14
PDF Downloads 360 206 8