Microstructural strength of tidal soils – a rheometric approach to develop pedotransfer functions

Open access

Abstract

Differences in soil stability, especially in visually comparable soils can occur due to microstructural processes and interactions. By investigating these microstructural processes with rheological investigations, it is possible to achieve a better understanding of soil behaviour from the mesoscale (soil aggregates) to macroscale (bulk soil). In this paper, a rheological investigation of the factors influencing microstructural stability of riparian soils was conducted. Homogenized samples of Marshland soils from the riparian zone of the Elbe River (North Germany) were analyzed with amplitude sweeps (AS) under controlled shear deformation in a modular compact rheometer MCR 300 (Anton Paar, Germany) at different matric potentials. A range physicochemical parameters were determined (texture, pH, organic matter, CaCO3 etc.) and these factors were used to parameterize pedotransfer functions. The results indicate a clear dependence of microstructural elasticity on texture and water content. Although the influence of individual physicochemical factors varies depending on texture, the relevant features were identified taking combined effects into account. Thus, stabilizing factors are: organic matter, calcium ions, CaCO3 and pedogenic iron oxides; whereas sodium ions and water content represent structurally unfavorable factors. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed.

Ad-Hoc-Arbeitsgruppe Boden, 2005. Bodenkundliche Kartieranleitung. E. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart.

Ajayi Ayodele, E., Horn, R., 2016. Comparing the potentials of clay and biochar in improving water retention and mechanical resilience of sandy soil. Int. Agrophys., 30, 391-399.

Al-Shayea, N.A., 2001. The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Eng. Geol., 62, 319-342.

Armstrong, A.S.B., Tanton, T.W., 1992. Gypsum applications to aggregated saline sodic clay topsoils. J. Soil Sci., 43, 2, 249-260.

Baldock, J.A., Aoyama, M., Oades, J.M., Susanto, Grant, C.D., 1994. Structural amelioration of a South Australian redbrown earth using calcium and organic amendments. Aust. J. Soil Res., 32, 3, 571-594.

Baumgarten, W., 2013. Soil microstructural stability as influenced by physicochemical parameters and its environmental relevance on multiple scales. Habilitation Thesis, Christian-Albrechts-Universität Kiel.

Baumgarten, W., Dörner, J., Horn, R., 2013. Microstructural development in volcanic ash soils from South Chile. Soil Tillage Res., 129, 48-60.

Baumgarten, W., Neugebauer, T., Fuchs, E., Horn, R., 2012. Structural stability of Marshland soils of the riparian zone of the Tidal Elbe River. Soil Tillage Res., 125, 80-88.

Bergemann, M., 1995. Die Lage der oberen Brackwassergrenze im Elbeästuar. Deutsche Gewässerkundliche Mitteilungen, 39, 4-5, 134-137.

Blume, H.-P., Stahr, K., Leinweber, P., 2011. Bodenkundliches Praktikum. Eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte, und für Geowissenschaftler. Spektrum Akademischer Verlag, Heidelberg.

Brandenburg, U., Lagaly, G., 1988. Rheological properties of sodium montmorillonite dispersions. Appl. Clay Sci., 3, 3, 263-279.

Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124, 1-2, 3-22.

Carotenuto, C., Merola, M.C., Álvarez-Romero, M., Coppola, E. Minale, M., 2015. Rheology of natural slurries involved in a rapid mudflow with different soil organic carbon content. Colloid Surface A, 466, 57-65.

Chan, K.Y., Conyers, M.K., Scott, B.J., 2007. Improved structural stability of an acidic hardsetting soil attributable to lime application. Commun Soil Sci. Plan., 38, 15-16, 2163-2175.

Chenu, C., Le Bissonnais, Y., Arrouays, D., 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J., 64, 4, 1479-1486.

Cho, G.C., Dodds, J., Santamarina, J.C., 2006. Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 132, 5, 591-602.

Çokça, E., Tilgen, H.P., 2010. Shear strength-suction relationship of compacted Ankara clay. Appl. Clay Sci., 49, 4, 400-404.

Czibulya, Z., Szegi, T., Michéli, E., Tombácz, E., 2014. Rheological measurements for indicating structural changes in selected soil catenas of European experimental fields. Int. J. Agric. Sci. Technol., 2, 1, 22-31.

De Gryze, S., Six, J., Brits, C., Merckx, R., 2005. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biol. Biochem., 37, 1, 55-66.

Denef, K., Six, J., Merckx, R., Paustian, K., 2002. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant Soil, 246, 2, 185-200.

Dolinar, B., Trauner, L., 2007. The impact of structure on the undrained shear strength of cohesive soils. Eng. Geol., 92, 1-2, 88-96.

Freitag, C., Hochfeld, B., Ohle, N., 2007. Lebensraum Tiedeelbe. Coastline Reports, 9, 69-79.

Gallipoli, D., Gens, A., Sharma, R., Vaunat, J., 2003. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Geotechnique, 53, 9, 844-844.

Garniel, A., Mierwald, U., 1996. Changes in the morphology and vegetation along the human-altered shoreline of the Lower Elbe. In: Nordstrom, K.F., Roman, C.T. (Eds.): Estuarine Shores: Evolution, Environments and Human Alterations. John Wiley & Sons Ltd., New York, USA, pp. 375-396.

Ghezzehei, T.A., Or, D., 2001. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci. Soc. Am. J., 65, 3, 624-637.

Goebel, M.O., Bachmann, J., Woche, S.K., Fischer, W.R., 2005. Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma, 128, 1-2, 80-93.

Hartge, K.H., Horn, R., 2016. Essential Soil Physics. An Introduction to Soil Processes, Functions, Structure and Mechanics. Schweizerbart, Stuttgard, 389 p.

Holthusen, D., 2010. Fertilization induced changes in soil stability at the microscale revealed by rheometry. Dissertation Thesis. Christian-Albrechts-Universität Kiel.

Holthusen, D., Peth, S., Horn, R., 2010. Impact of potassium concentration and matric potential on soil stability derived from rheological parameters. Soil Tillage Res., 111, 1, 75-85.

Holthusen, D., Jänicke, M., Peth, S., Horn, R., 2012a. Physical properties of a Luvisol for different long-term fertilization treatments II. Microscale behavior and its relation to the mesoscale. J. Plant Nutr. Soil Sci., 175, 1, 14-23.

Holthusen, D., Peth, S., Horn, R., Kuhn, T., 2012b. Flow and deformation behavior at the microscale of soils from several long-term potassium fertilization trials in Germany. J. Plant Nutr. Soil Sci., 175, 4, 535-547.

Holthusen, D., Reeb, D., Horn, R., 2012c. Influence of potassium fertilization, water and salt stress, and their interference on rheological soil parameters in planted containers. Soil Tillage Res., 125, 72-79.

Horn, R., 1990. Aggregate characterization as compared to soil bulk properties. Soil Tillage Res., 17, 3-4, 265-289.

Hoyos, L.R., Velosa, C.L., Puppala, A.J., 2014. Residual shear strength of unsaturated soils via suction-controlled ring shear testing. Eng. Geol., 172, 1-11.

Israelachvili, J.N., Mcguiggan, P.M., Homola, A.M., 1988. Dynamic properties of molecularly thin liquid-films. Science, 240, 4849, 189-191.

Jasmund, K., Lagaly, G., 1993. Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt.

Jeong, S.W., Locat, J., Leroueil, S., Malet, J.P., 2010. Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Canadian Geotechnical Journal, 47, 10, 1085-1100.

Kézdi, Á., 1974. Handbook of Soil Mechanics, Vol. 1: Soil Physics. Elsevier, Amsterdam.

Laird, N.M., Ware, J.H., 1982. Random-effects models for longitudinal data. Biometrics, 38, 4, 963-974.

Li, Y.R., Aydin, A., Xu, Q., Chen, J., 2012. Constitutive behavior of binary mixtures of kaolin and glass beads in direct shear. KSCE J. Civ. Eng., 16, 7, 1152-1159.

Majzik, A., Tombácz, E., 2007. Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation. Org Geochem, 38, 8, 1319-1329.

Markgraf, W., 2006. Microstructural changes in soils. rheological investigations in soil mechanics. Dissertation Thesis. Christian-Albrechts-Universität Kiel.

Markgraf, W., Horn, R., 2006. Rheological-stiffness analysis of K+-treated and CaCO3-rich soils. J. Plant Nutr. Soil. Sci., 169, 3, 411-419.

Markgraf, W., Horn, R., 2007. Scanning electron microscopyenergy dispersive scan analyses and rheological investigations of south-Brazilian soils. Soil Sci. Soc. Am. J., 71, 3, 851-859.

Markgraf, W., Horn, R., 2009. Rheological investigations in soil micro mechanics: Measuring stiffness degradation and structural stability on a particle scale. In: Gragg, L.P., Cassell, J.M. (Eds.): Progress in Management Engineering. Nova Science Publishers, Inc., New York, pp. 237-279.

Markgraf, W., Horn, R., Peth, S., 2006. An approach to rheometry in soil mechanics - Structural changes in bentonite, clayey and silty soils. Soil Till. Res., 91, 1-2, 1-14.

Markgraf, W., Moreno, F., Horn, R., 2012a. Quantification of microstructural changes in Salorthidic Fluvaquents using rheological and particle charge techniques. Vadose Zone J., 11, 1. DOI:10.2136/vzj2011.0061.

Markgraf, W., Watts, C.W., Whalley, W.R., Hrkac, T., Horn, R., 2012b. Influence of organic matter on rheological properties of soil. Appl. Clay Sci., 64, 25-33.

Mehra, O.P., Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner., 7, 317-327.

Mezger, T.G., 2014. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers. Vincentz Network, Hannover, Germany.

Oades, J.M., 1984. Soil organic-matter and structural stability - Mechanisms and implications for management. Plant Soil, 76, 1-3, 319-337.

Osipov, V.I., 2014. Physicochemical theory of effective stresses in soils. Water Resources, 41, 7, 801-818.

Paradelo, R., van Oort, F., Chenu, C., 2013. Water-dispersible clay in bare fallow soils after 80 years of continuous fertilizer addition. Geoderma, 200, 40-44.

Pértile, P., Reichert, J.M., Gubiani, P.I., Holthusen, D., Costa, A.d., 2016. Rheological parameters as affected by water tension in subtropical soils. Rev. Bras. Cienc. Solo, 40, e0150286.

Peth, S., Rostek, J., Zink, A., Mordhorst, A., Horn, R., 2010. Soil testing of dynamic deformation processes of arable soils. Soil Tillage Res., 106, 2, 317-328.

Pronk, G.J., Heister, K., Kogel-Knabner, I., 2011. Iron oxides as major available interface component in loamy arable topsoils. Soil Sci. Soc. Am. J., 75, 6, 2158-2168.

R Developement Core Team, 2013. R: A language and environment for statistical computing.

Rengasamy, P., Olsson, K.A., 1991. Sodicity and soil structure. Aust. J. Soil Res., 29, 6, 935-952.

Santamarina, J.C., 2001. Soil behavior at the microscale: Particle forces. In: Proceedings of the Symposium of Soil Behavior and Soft Ground Construction, in honor of Charles C. Ladd. MIT, pp. 1-32.

Santamarina, J.C., Shin, H., 2009. Friction in granular media. In: Hatzor, Y.H., Sulem, J., Vardoulakis, I. (Eds.): Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. CRC Press, Boca Raton, London.

Schlichting, E., Blume, H.-P., Stahr, K., 1995. Bodenkundliches Praktikum. Eine Einführung in und Forstwirte und für Geowissenschaftler. Blackwell Wissenschafts-Verlag, Berlin, Wien.

Schwertmann, U., Niederbudde, E.-A., 1993. Tonminerale in Böden. In: Jasmund, K., Lagaly, G. (Eds.): Tonminerale und Tone. Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt, pp. 212-265.

Six, J., Feller, C., Denef, K., Ogle, S.M., Sa, J.C.D., Albrecht, A., 2002. Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie, 22, 7-8, 755-775.

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res., 79, 1, 7-31.

Smith, D.W., Reitsma, M.G., 2002. Towards an explanation for the residual friction angle in montmorillonite clay soils. In: Vulliet, L., Laloui, L., Schrefler, B. (Eds.): Environmental Geomechanics. EPFL/ Centre Midi, Lausanne, Schweiz, pp. 27-44.

Stoppe, N., Horn, R., 2017. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties? IOP Conference Series: Journal of Physics: Conference Series, 790(1)012032.

Sumner, M.E., Naidu, R., 1998. Sodic Soils: Distribution, Properties, Management and Environmental Consequences. Oxford University Press Inc., New York.

Tisdall, J.M., Oades, J.M., 1982. Organic matter and waterstable aggregates in soils. J. Soil Sci., 33, 2, 141-163.

Torrance, J.K., 1999. Physical, chemical and mineralogical influences on the rheology of remoulded low-activity sensitive marine clay. Appl. Clay Sci., 14, 4, 199-223.

Vallejo, L.E., Mawby, R., 2000. Porosity influence on the shear strength of granular material-clay mixtures. Eng. Geol., 58, 2, 125-136.

Verbeke, G., Molenberghs, G., 2008. Linear Mixed Models for Longitudinal Data. Springer Verlag, New York.

Warkentin, B.R., 2008. Soil structure: A history from tilth to habitat. Adv. Agron., 97, 239-272.

Wuddivira, M.N., Camps-Roach, G., 2007. Effects of organic matter and calcium on soil structural stability. Eur. J. Soil Sci., 58, 3, 722-727.

Zhang, X.C., Norton, L.D., 2002. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol., 260, 194-205.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 287 8
PDF Downloads 94 94 5