A novel fuzzy clustering approach to regionalise watersheds with an automatic determination of optimal number of clusters

Javier Senent-Aparicio 1 , Jesús Soto 1 , Julio Pérez-Sánchez 1  and Jorge Garrido 1
  • 1 Civil Engineering Department, UCAM Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, nº 135, 30107 , Murcia, Spain


One of the most important problems faced in hydrology is the estimation of flood magnitudes and frequencies in ungauged basins. Hydrological regionalisation is used to transfer information from gauged watersheds to ungauged watersheds. However, to obtain reliable results, the watersheds involved must have a similar hydrological behaviour. In this study, two different clustering approaches are used and compared to identify the hydrologically homogeneous regions. Fuzzy C-Means algorithm (FCM), which is widely used for regionalisation studies, needs the calculation of cluster validity indices in order to determine the optimal number of clusters. Fuzzy Minimals algorithm (FM), which presents an advantage compared with others fuzzy clustering algorithms, does not need to know a priori the number of clusters, so cluster validity indices are not used. Regional homogeneity test based on L-moments approach is used to check homogeneity of regions identified by both cluster analysis approaches. The validation of the FM algorithm in deriving homogeneous regions for flood frequency analysis is illustrated through its application to data from the watersheds in Alto Genil (South Spain). According to the results, FM algorithm is recommended for identifying the hydrologically homogeneous regions for regional frequency analysis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agarwal, A., Maheswaran, R., Sehgal, V., Khosa, R., Sivakumar, B., Bernhofer, C., 2016. Hydrologic regionalization using wavelet-based multiscale entropy method. J. Hydrol., 538, 22-32.

  • Arnoldus, H.B.J., 1980. An approximation of the rainfall in the universal soil loss equation. In: De Boodt, M., Gabriels, D. (Eds.), Assesment of Erosion. John Wiley & Sons, Chichester, pp. 127-132

  • Bargaoui, Z.K., Fortin, V., Bobée, B., Duckstein, L., 1998. A fuzzy approach to the delineation of region of influence for hydrometric stations. Revue des sciences de l'eau 11, 2, 255-282. (In French.)

  • Basu, B., Srinivas, V.V., 2014. Regional flood frequency analysis using kernel-based fuzzy clustering approach. Water Resour. Res., 50, 4, 3295-3316.

  • Basu, B., Srinivas, V.V., 2015. Analytical approach to quantile estimation in regional frequency analysis based on fuzzy framework. J. Hydrol., 524, 30-43.

  • Bellman, R., Kalaba, R., Zadeh, L.A., 1966. Abstraction and pattern classification. J. Math. Anal. Appl., 2, 581-585.

  • Bezdek, J.C., 1974. Cluster validity with fuzzy sets. J. Cybernet., 3, 3, 58-73.

  • Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 266 p.

  • Burn, D.H., Zrinji, Z., Kowalchuk, M., 1997. Regionalization of catchments for regional flood frequency analysis. J. Hydrol. Eng., 2, 2, 76-82.

  • Dikbas, F., Mahmut, F., Cem, K., Gungor, M., 2012. Classification of precipitation series using fuzzy cluster method. Int. J. Climatol., 32, 1596-1603.

  • Dunn, J.C., 1974. A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. J. Cybernet., 3, 3, 32-57.

  • Flores-Sintas, A., Cadenas, J.M., Martin, F., 1998. A local geometrical properties application to fuzzy clustering. Fuzzy Sets and Systems, 100, 237-248.

  • Flores-Sintas, A., Cadenas, J.M., Martin, F., 1999. Membership functions in the Fuzzy C-Means algorithm. Fuzzy Sets and Systems, 101, 49-58.

  • Flores-Sintas, A., Cadenas, J.M., Martin, F., 2000. Partition validity and defuzzification. Fuzzy Sets and Systems, 112, 433-447.

  • Fournier, F., 1960. Climat et érosion. La relation entre l´érosion du sol par l´eau et les précipitations atmosphériques. [Relationship between soil erosion by water and rainfall]. Presse Universitaire de France, Paris. (In French.)

  • Fukuyama, Y., Sugeno, M., 1989. A new method of choosing the number of clusters for the fuzzy c-means method. In: Proc. 5th Fuzzy Syst. Symp., pp. 247-250 (In Japanese.)

  • Gaál, L., Szolgay, J., Lapin, M., Fasko, P., 2009. Hybrid approach to delineation of homogeneous regions for regional precipitation frequency analysis. J. Hydrol. Hydromech., 57, 4, 226-249.

  • Gabriels, D., 2006. Assessing the modified Fournier Index and the Precipitation Concentration Index for some European countries. In: Boardman, J., Poesen, J. (Eds.): Soil Erosion in Europe. John Wiley & Sons, Chichester, pp. 675-684.

  • Goyal, M.K., Gupta, V., 2014. Identification of homogeneous rainfall regimes in northeast region of India using Fuzzy Cluster Analysis. Water Resour. Manag., 28, 4491-4511.

  • Goyal, M.K., Sharma, A. 2016. A fuzzy c-means approach regionalization for analysis of meteorological drought homogeneous regions in western India. Nat. Hazards. DOI: 10.1007/s11069-016-2520-9.

  • Hall, M.J., Minns, A.W., 1999. The classification of hydrologically homogeneous regions. Hydrol. Sci. J., 44, 5, 693-704.

  • Hawkins, R.H., Ward, T.J., Woodward, D.E., Van Mullem, J.A., 2009. Curve number hydrology: state of the practice, Report of ASCE/EWRI Task Committee, American Society of Civil Engineers, Reston, Virginia, USA.

  • Hosking, J.R.M., Wallis, J.R., 1993. Some statistics useful in regional frequency-analisis. Water Resour. Res., 29, 2, 271-281.

  • Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis: An Approach based on L-Moments. Cambridge University Press, New York.

  • Isik, S., Singh, V.P., 2008. Hydrologic regionalization of watersheds in Turkey. J. Hydrol. Eng., 13, 824-834.

  • Jingyi, Z., Hall, M.J., 2004. Regional flood frequency analysis for the Gan-Ming River basin in China. J. Hydrol., 296, 98-117.

  • Kumar, R., Goel, N.K., Chatterjee, C., Nayak, P.C., 2015. Regional flood frequency analysis using soft computing techniques. Water Resour. Manage., 29, 1965.

  • MAGRAMA, 2016. Ministerio de Agricultura, Alimentación y Medio Ambiente. Sistema de Información del Agua. Retrieved from http://www.magrama.gob.es/es/agua/temas/planificacionhidrologica/sia-/ (In Spanish)

  • Nathan, R.J., McMahon, T.A., 1990. Identification of homogeneous regions for the purposes of regionalization. J. Hydrol., 121, 217-238.

  • Pal, N.R., Bezdek, J.C., 1995. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst., 3, 3, 370-379.

  • Raju, K.S., Nagesh Kumar, D., 2011. Classification of microwatersheds based on morphological characteristics. J. Hydro- Environ. Res., 5, 101-109.

  • Rao, A.R., Srinivas, V.V., 2006. Regionalization of watersheds by fuzzy cluster analysis. J. Hydrol., 318, 57-79.

  • Rao, A.R., Srinivas, V.V., 2008. Regionalization of Watersheds: An Approach Based on Cluster Analysis. Water Science and Technology Library Vol. 58. Springer Science & Business Media.

  • Ross, T.J., 1995. Fuzzy Logic with Engineering Applications, McGraw-Hill, New York. Ruspini, E.H., 1969. A new approach to clustering. Inform. and Control, 15, 22-32.

  • Smithers, J.C., Schulze, R.E., 2001. A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. J. Hydrol., 24, 42-52.

  • Soto, J., Flores-Sintas, A., Paralea-Albaladejo, J., 2008. Improving probabilities in a fuzzy clustering partition. Fuzzy Sets and Systems, 159, 406-421.

  • Srinivas, V.V., Tripathi, S., Rao, A.R., Govindaraju, R.S., 2008. Regional flood frequency analysis by combining selforganizing feature maps and fuzzy clustering. J. Hydrol., 348, 148-166.

  • Timón, I., Soto, J., Pérez-Sánchez, H., Cecilia, J.M., 2016. Parallel implementation of fuzzy minimals clustering algorithm. Expert Systems with Applications, 48, 35-41.

  • Xie, X.L., Beni, G., 1991. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell., 13, 8, 841-847.

  • Zadeh, L.A., 1965. Fuzzy sets. Information and Control, 8, 3, 338-353.


Journal + Issues