Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration

Open access


In Mediterranean ecosystems, special attention needs to be paid to forest–water relationships due to water scarcity. In this context, Adaptive Forest Management (AFM) has the objective to establish how forest resources have to be managed with regards to the efficient use of water, which needs maintaining healthy soil properties even after disturbance. The main objective of this investigation was to understand the effect of one of the AFM methods, namely forest thinning, on soil hydraulic properties. At this aim, soil hydraulic characterization was performed on two contiguous Mediterranean oak forest plots, one of them thinned to reduce the forest density from 861 to 414 tree per ha. Three years after the intervention, thinning had not affected soil water permeability of the studied plots. Both ponding and tension infiltration runs yielded not significantly different saturated, Ks, and unsaturated, K−20, hydraulic conductivity values at the thinned and control plots. Therefore, thinning had no an adverse effect on vertical water fluxes at the soil surface. Mean Ks values estimated with the ponded ring infiltrometer were two orders of magnitude higher than K−20 values estimated with the minidisk infiltrometer, revealing probably soil structure with macropores and fractures. The input of hydrophobic organic matter, as a consequence of the addition of plant residues after the thinning treatment, resulted in slight differences in terms of both water drop penetration time, WDPT, and the index of water repellency, R, between thinned and control plots. Soil water repellency only affected unsaturated soil hydraulic conductivity measurements. Moreover, K−20 values showed a negative correlation with both WDPT and R, whereas Ks values did not, revealing that the soil hydrophobic behavior has no impact on saturated hydraulic conductivity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alonso-Sarría F. Martínez-Hernández C. Romero-Díaz A. Cánovas-García F. Gomariz-Castillo F. 2016. Main environmental features leading to recent land abandonment in Murcia region (Southeast Spain). Land Degrad. Develop. 27 654–670. DOI: 10.1002/ldr.2447.

  • Angulo-Jaramillo R. Vandervaere J.-P. Roulier S. Thony J.-L. Gaudet J.-P. Vauclin M. 2000. Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil and Tillage Research 55 1–29. DOI: 10.1016/S0167-1987(00)00098-2.

  • Angulo-Jaramillo R. Bagarello V. Iovino M. Lassabatère L. 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing.

  • Aussenac G. Granier A. 1988. Effects of thinning on water stress and growth in Douglas-fir. Canadian Journal of Forest Research 18 100–105. DOI: 10.1139/x88-015.

  • Bachmann J. Woche S.K. Goebel M.-O. Kirkham M.B. Horton R. 2003. Extended methodology for determining wetting properties of porous media. Water Resour. Res. 39 1353. DOI: 10.1029/2003WR002143.

  • Bagarello V. Di Prima S. Iovino M. Provenzano G. 2014. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrological Processes 28 1095–1103. DOI:10.1002/hyp.9649.

  • Bautista I. Pabón C. Lull C. González-Sanchís M. Lidón A. del Campo A. 2015. Efectos de la gestión forestal en los flujos de nutrientes asociados al ciclo hidrológico en un bosque mediterráneo de Quercus Ilex. Cuadernos de la Sociedad Española de Ciencias Forestales 41 343–354.

  • Benito Rueda E. Rodríguez-Alleres M. Varela Teijeiro E. 2016. Environmental factors governing soil water repellency dynamics in a Pinus Pinaster plantation in NW Spain. Land Degrad. Develop. 27 719–728. DOI:10.1002/ldr.2370

  • Bens O. Wahl N.A. Fischer H. Hüttl R.F. 2006. Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. Eur. J. Forest Res. 126 101–109. DOI: 10.1007/s10342-006-0133-7.

  • Beven K. Germann P. 1982. Macropores and water flow in soils. Water Resour. Res. 18 1311–1325. DOI: 10.1029/WR018i005p01311.

  • Bisantino T. Bingner R. Chouaib W. Gentile F. Trisorio Liuzzi G. 2015. Estimation of runoff peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the Annagnps Model. Land Degrad. Develop. 26 340–355. DOI:10.1002/ldr.2213.

  • Blanco-Canqui H. Lal R. Shipitalo M.J. 2007. Aggregate disintegration and wettability for long-term management systems in the Northern Appalachians. Soil Science Society of America Journal 71 759. DOI:10.2136/sssaj2006.0001.

  • Blanco-Canqui H. Lal R. 2009. Extent of soil water repellency under long-term no-till soils. Geoderma 149 171–180. DOI: 10.1016/j.geoderma.2008.11.036.

  • Bodí M.B. Muñoz-Santa I. Armero C. Doerr S.H. Mataix-Solera J. Cerdà A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena 108 14–25. DOI: 10.1016/j.catena.2012.04.002.

  • Brooks K.N. Folliott P.F. Gregersen H.M. DeBano L.F. 2003. Hydrology and the Management of Watersheds. 3rd Ed. Wiley-Blackwell Ames 574 p.

  • Buczko U. Bens O. 2006. Assessing soil hydrophobicity and its variability through the soil profile using two different methods. Soil Science Society of America Journal 70 718–727. DOI: 10.2136/sssaj2005.0183.

  • Buczko U. Benz O. Hangen E. Brunotte J. Huttl R. 2003. Infiltration and macroporosity of a silt loam soil under two contrasting tillage systems. Landbauforschung Volkenrode 53 181–190.

  • Buczko U. Bens O. Hüttl R.F. 2006. Water infiltration and hydrophobicity in forest soils of a pine–beech transformation chronosequence. Journal of Hydrology 331 383–395. DOI: 10.1016/j.jhydrol.2006.05.023.

  • Cammeraat E.L.H. Cerdà A. Imeson A.C. 2010. Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrol. 3 421–430. DOI: 10.1002/eco.161.

  • Capriel P. Beck T. Borchert H. Gronholz J. Zachmann G. 1995. Hydrophobicity of the organic matter in arable soils. Soil Biology and Biochemistry 27 1453–1458. DOI: 10.1016/0038-0717(95)00068-P.

  • Cerdà A. 1996. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma 69 217–232. DOI: 10.1016/0016-7061(95)00062-3.

  • Cerdà A. 1997. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology 198 209–225. DOI: 10.1016/S0022-1694(96)03295-7.

  • Cerdà A. 1999. Simuladores de lluvia y su aplicación a la Geomorfologia: estado de la cuestión. [A review of the rainfall simulators and its applications to the Geomorphology]. Cuadernos de investigación geográfica 25 45–84. doi:

  • Cerdà A. Doerr S.H. 2007. Soil wettability runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 21 2325–2336. DOI: 10.1002/hyp.6755.

  • Decagon Devices Inc. 2014. Minidisk Infiltrometer User’s Manual. Decagon Devices Inc. Pullman USA 24.

  • Dekker L.W. Doerr S.H. Oostindie K. Ziogas A.K. Ritsema C.J. 2001. Water repellency and critical soil water content in a dune sand. Soil Science Society of America Journal 65 1667–1674. DOI: 10.2136/sssaj2001.1667.

  • DeBano L.F. 1981. Water repellent soils: a state-of-the-art. US Department of Agriculture Forest Service Pacific Southwest Forest and Range Experiment Station.

  • del Campo A.D. Fernandes T.J.G. Molina A.J. 2014. Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research 133 879–894. DOI: 10.1007/s10342-014-0805-7.

  • Di Prima S. 2015. Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture 118 390–395. DOI: 10.1016/j.compag.2015.09.022.

  • Di Prima S. Lassabatere L. Bagarello V. Iovino M. Angulo-Jaramillo R. 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262 20–34. DOI: 10.1016/j.geoderma.2015.08.006.

  • Dlapa P. Bodí M.B. Mataix-Solera J. Cerdà A. Doerr S.H. 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena 108 35–43. DOI: 10.1016/j.catena.2012.02.011.

  • Doerr S.H. Shakesby R.A. Walsh R.P.D. 2000. Soil water repellency: its causes characteristics and hydrogeomorphological significance. Earth-Science Reviews 51 33–65.

  • Dunn G.H. Phillips R.E. 1991. Macroporosity of a welldrained soil under no-till and conventional tillage. Soil Science Society of America Journal 55 817–823. DOI: 10.2136/sssaj1991.03615995005500030031x.

  • Ebel B.A. Moody J.A. 2013. Rethinking infiltration in wildfire-affected soils. Hydrol. Process. 27 1510–1514. DOI: 10.1002/hyp.9696.

  • Ebel B.A. Moody J.A. Martin D.A. 2012. Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resour. Res. 48 W03529. DOI: 10.1029/2011WR011470.

  • Ellerbrock R.H. Gerke H.H. Bachmann J. Goebel M.-O. 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal 69 57–66. DOI: 10.2136/sssaj2005.0057.

  • Elrick D.E. Reynolds W.D. 1992. Methods for analyzing constant-head well permeameter data. Soil Science Society of America Journal 56 320–323. DOI: 10.2136/sssaj1992.03615995005600010052x.

  • Fernández C. Vega J.A. Jiménez E. Fonturbel T. 2011. Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain). Int. J. Wildland Fire 20 104–114.

  • Gallart F. Latron J. Llorens P. Rabadà D. 1997. Hydrological functioning of mediterranean mountain basins in Vallcebre Catalonia: Some challenges for hydrological modelling. Hydrol. Process. 11 1263–1272. DOI: 10.1002/(SICI)1099-1085(199707)11:9<1263::AID-HYP556>3.0.CO;2-W.

  • García F.J.M. Dekker L.W. Oostindie K. Ritsema C.J. 2005. Water repellency under natural conditions in sandy soils of southern Spain. Aust. J. Soil Res. 43 291–296.

  • García-Moreno J. Gordillo-Rivero Á.J. Zavala L.M. Jordán A. Pereira P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research 130 62–68. DOI: 10.1016/j.still.2013.02.004.

  • Gee G.W. Bauder J.W. 1986. Particle-size analysis. In: Klute A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America American Society of Agronomy Madison pp. 383–411.

  • Giovannini G. Lucchesi S. 1983. Effect of fire on hydrophobic and cementing substances of soil aggregates. Soil Science 136 231–236.

  • González-Peñaloza F.A. Cerdà A. Zavala L.M. Jordán A. Giménez-Morera A. Arcenegui V. 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research 124 233–239. DOI: 10.1016/j.still.2012.06.015.

  • González-Sanchis M. del Campo A. Bautista I. Lidón A. García A. Llull C. 2013. Hydrological silviculture effects in a natural Quercus ilex forest. Geophysical Research Abstracts Vol. 15 EGU2013-313.

  • González-Sanchis M. del Campo A. Lidón A. Lull C. Bautista I. García-Prats A. Francés F. 2015. Incorporación de criterios eco-hidrológicos en la gestión forestal: adaptación a la escasez de agua de una masa marginal de encina. Cuadernos de la Sociedad Española de Ciencias Forestales 41 211–218.

  • Gonzalez-Sosa E. Braud I. Dehotin J. Lassabatère L. Angulo-Jaramillo R. Lagouy M. Branger F. Jacqueminet C. Kermadi S. Michel K. 2010. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrol. Process. 24 2382–2399. DOI: 10.1002/hyp.7640.

  • Hallett P.D. Young I.M. 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European Journal of Soil Science 50 35–40. DOI: 10.1046/j.1365-2389.1999.00214.x.

  • Hallett P.D. Baumgartl T. Young I.M. 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Science Society of America Journal 65 184–190.

  • Heiskanen J. Mäkitalo K. 2002. Soil water-retention characteristics of Scots pine and Norway spruce forest sites in Finnish Lapland. Forest Ecology and Management 162 137–152. DOI: 10.1016/S0378-1127(01)00503-5.

  • Hibbert A.R. 1983. Water yield improvement potential by vegetation management on western rangelands. JAWRA Journal of the American Water Resources Association 19 375–381. DOI: 10.1111/j.1752-1688.1983.tb04594.x.

  • Keesstra S. Bouma J. Wallinga J. Tittonell P. Smith P. Cerdà A. Montanarella L. Quinton J.N. Pachepsky Y. van der Putten W.H. Bardgett R.D. Moolenaar S. Mol G. Jansen B. Fresco L.O. 2016a. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2 111–128. DOI: 10.5194/soil-2-111-2016.

  • Keesstra S. Wittenberg L. Maroulis J. Sambalino F. Malkinson D. Cerdà A. Pereira P. 2016b. The influence of fire history plant species and post-fire management on soil water repellency in a Mediterranean catchment: The Mount Carmel range Israel. Catena. DOI: 10.1016/j.catena.2016.04.006.

  • Kemper W.D. Rosenau R.C. 1986. Aggregate stability and size distribution. In: Klute A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America American Society of Agronomy Madison pp. 425–442.

  • Lassabatère L. Angulo-Jaramillo R. Soria Ugalde J.M. Cuenca R. Braud I. Haverkamp R. 2006. Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Science Society of America Journal 70 521–532. DOI: 10.2136/sssaj2005.0026.

  • Lassabatere L. Angulo-Jaramillo R. Yilmaz D. Winiarski T. 2013. BEST method: Characterization of soil unsaturated hydraulic properties. In: Caicedo et al. (Eds): Advances in Unsaturated Soils. CRC Press London 527–532.

  • Lassabatere L. Yilmaz D. Peyrard X. Peyneau P.E. Lenoir T. Šimůnek J. Angulo-Jaramillo R. 2014. New analytical model for cumulative infiltration into dual-permeability soils. Vadose Zone J. 13. doi:10.2136/vzj2013.10.0181

  • Lee D.M. Elrick D. Reynolds W. Clothier B.E. 1985. A comparison of three field methods for measuring saturated hydraulic conductivity. Canadian Journal of Soil Science 65 563–573.

  • Lichner L. Hallett P. Feeney D. Ďugová O. Šír M. Tesař M. 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia 62 537–541. DOI: 10.2478/s11756-007-0106-4.

  • Lilliefors H.W. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62 399–402. DOI: 10.1080/01621459.1967.10482916.

  • Molina A.J. del Campo A.D. 2012. The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management 269 206–213. DOI: 10.1016/j.foreco.2011.12.037.

  • Mollnau C. Newton M. Stringham T. 2014. Soil water dynamics and water use in a western juniper (Juniperus occidentalis) woodland. Journal of Arid Environments 102 117–126. DOI: 10.1016/j.jaridenv.2013.11.015.

  • Moody J.A. Kinner D.A. Úbeda X. 2009. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. Journal of Hydrology 379 291–303. DOI: 10.1016/j.jhydrol.2009.10.015.

  • Nelson D.W. Sommers L.E. 1996. Total carbon organic carbon and organic matter. In: Sparks D.L. (Ed.): Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America American Society of Agronomy Madison pp. 961–1010.

  • Nyman P. Sheridan G. Lane P.N.J. 2010. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil south-east Australia. Hydrol. Process. 24 2871–2887. DOI: 10.1002/hyp.7701.

  • Pereira P. Cerdà A. Úbeda X. Mataix-Solera J. Arcenegui V. Zavala L.M. 2015. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degrad. Develop. 26 180–192. DOI: 10.1002/ldr.2195.

  • Pirastru M. Niedda M. Castellini M. 2014. Effects of maquis clearing on the properties of the soil and on the nearsurface hydrological processes in a semi-arid Mediterranean environment. Journal of Agricultural Engineering 45 176. DOI: 10.4081/jae.2014.428.

  • Prats S.A. MacDonald L.H. Monteiro M. Ferreira A.J.D. Coelho C.O.A. Keizer J.J. 2012. Effectiveness of forest residue mulching in reducing post-fire runoff and erosion in a pine and a eucalypt plantation in north-central Portugal. Geoderma 191 115–124. DOI: 10.1016/j.geoderma.2012.02.009.

  • Rawitz E. Hazan A. 1978. The effect of stabilized hydrophobic aggregate layer properties on soil water regime and seedling emergence. Soil Science Society of America Journal 42 787–793. DOI: 10.2136/sssaj1978.03615995004200050028x.

  • Reynolds W.D. Bowman B.T. Brunke R.R. Drury C.F. Tan C.S. 2000. Comparison of Tension Infiltrometer Pressure Infiltrometer and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Science Society of America Journal 64 478–484. DOI:10.2136/sssaj2000.642478x.

  • Riechers G.H. Beyers J.L. Robichaud P.R. Jennings K. Kreutz E. Moll J. 2008. Effects of three mulch treatments on initial postfire erosion in north-central Arizona. In: Narog M.G. (Ed.): Proc. 2002 Fire Conf.: Managing Fire and Fuels in the Remaining Wildlands and Open Spaces of the Southwestern United States. Gen. Tech. Rep. PSW-GTR-189. U.S. Department of Agriculture Forest Service Pacific Southwest Research Station Albany CA pp. 107–113.

  • Roberson E.B. Shennan C. Firestone M.K. Sarig S. 1995. Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil. Soil Science Society of America Journal 59 1587–1594. DOI: 10.2136/sssaj1995.03615995005900060012x.

  • Ruiz-Colmenero M. Bienes R. Eldridge D.J. Marques M.J. 2013. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 104 153–160. DOI: 10.1016/j.catena.2012.11.007.

  • SAS Institute Inc. 1999. SAS/STAT User’s Guide Volume 1 Version 8.2. Cary NC: Statistical Analysis Systems (SAS) Institute Inc.

  • Scott D.F. 2000. Soil wettability in forested catchments in South Africa; as measured by different methods and as affected by vegetation cover and soil characteristics. Journal of Hydrology 231–232 87–104. DOI: 10.1016/S0022-1694(00)00186-4.

  • Shakesby R.A. Boakes D.J. Coelho C. de O. Gonçalves A.B. Walsh R.P. 1996. Limiting the soil degradational impacts of wildfire in pine and eucalyptus forests in Portugal. Applied Geography 16 337–355. DOI: 10.1016/0143-6228(96)00022-7.

  • Šimon T. Javůrek M. Mikanová O. Vach M. 2009. The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil and Tillage Research 105 44–48. DOI: 10.1016/j.still.2009.05.004.

  • Skinner F.A. 1979. Rothamsted studies of soil structure VII. European Journal of Soil Science 30 473–481. DOI: 10.1111/j.1365-2389.1979.tb01002.x.

  • Tillman R.W. Scotter D.R. Wallis M.G. Clothier B.E. 1989. Water repellency and its measurement by using intrinsic sorptivity. Soil Research 27 637–644.

  • Verheijen F.G.A. Cammeraat L.H. 2007. The association between three dominant shrub species and water repellent soils along a range of soil moisture contents in semi-arid Spain. Hydrol. Process. 21 2310–2316. DOI: 10.1002/hyp.6760.

  • Wang Z. Feyen J. Ritsema C.J. 1998. Susceptibility and predictability of conditions for preferential flow. Water Resour. Res. 34 2169–2182. DOI: 10.1029/98WR01761.

  • Wang Z. Wu Q.J. Wu L. Ritsema C.J. Dekker L.W. Feyen J. 2000. Effects of soil water repellency on infiltration rate and flow instability. Journal of Hydrology 231 265–276.

  • Wang Y. Fan J. Cao L. Liang Y. 2016. Infiltration and runoff generation under various cropping patterns in the Red Soil region of China. Land Degrad. Develop. 27 83–91. DOI: 10.1002/ldr.2460.

  • Warrick A.W. 1998. Spatial variability. In: Hillel D. (Ed.) Environmental Soil Physics. Academic Press San Diego CA pp. 655–675.

  • Watson K.W. Luxmoore R.J. 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal 50 578–582.

  • Wessel A.T. 1988. On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surf. Process. Landforms 13 555–561. DOI: 10.1002/esp.3290130609.

  • Wu L. Pan L. 1997. A generalized solution to infiltration from single-ring infiltrometers by scaling. Soil Science Society of America Journal 61 1318–1322.

  • Wu L. Pan L. Mitchell J. Sanden B. 1999. Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Science Society of America Journal 63 788–792. DOI: 10.2136/sssaj1999.634788x.

  • Zhang R. 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal 61 1024–1030. DOI: 10.2136/sssaj1997.03615995006100040005x.

  • Zhang L. Dawes W.R. Walker G.R. 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37 701–708. DOI: 10.1029/2000WR900325.

Journal information
Impact Factor

IMPACT FACTOR 2018: 2.023
5-year IMPACT FACTOR: 2.048

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 779 427 24
PDF Downloads 234 168 16