Mapping topsoil field-saturated hydraulic conductivity from point measurements using different methods

Open access

Abstract

Topsoil field-saturated hydraulic conductivity, Kfs, is a parameter that controls the partition of rainfall between infiltration and runoff and is a key parameter in most distributed hydrological models. There is a mismatch between the scale of local in situ Kfs measurements and the scale at which the parameter is required in models for regional mapping. Therefore methods for extrapolating local Kfs values to larger mapping units are required. The paper explores the feasibility of mapping Kfs in the Cévennes-Vivarais region, in south-east France, using more easily available GIS data concerning geology and land cover. Our analysis makes uses of a data set from infiltration measurements performed in the area and its vicinity for more than ten years. The data set is composed of Kfs derived from infiltration measurements performed using various methods: Guelph permeameters, double ring and single ring infiltrotrometers and tension infiltrometers. The different methods resulted in a large variation in Kfs up to several orders of magnitude. A method is proposed to pool the data from the different infiltration methods to create an equivalent set of Kfs. Statistical tests showed significant differences in Kfs distributions in function of different geological formations and land cover. Thus the mapping of Kfs at regional scale was based on geological formations and land cover. This map was compared to a map based on the Rawls and Brakensiek (RB) pedotransfer function (mainly based on texture) and the two maps showed very different patterns. The RB values did not fit observed equivalent Kfs at the local scale, highlighting that soil texture alone is not a good predictor of Kfs.

Andrieu, J., 2015. Landcover map Ardeche, Ceze and Gardon bassins, ESPRI/IPSL. https://doi.org/10.14768/MISTRALSHYMEX.1377

Angulo-Jaramillo, R., Vandervaere, J.-P., Roulier, S., Thony, J.-L., Gaudet, J.-P., Vauclin, M., 2000. Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil and Tillage Research, 55, 1–2, 1–29.

Ankeny, M.D., Ahmed, M., Kaspar, T.C., Horton, R., 1991. Simple field method for determining unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J., 55, 467–470.

Ayral, P.A., Sauvagnargues-Lesage, S., Gay, S., Bressand, F., 2005. Forecasting flash-floods with an operational model. Aplication in the South-East of France (Gard). In: Begum, S. (Ed.): Flood Risk Management in Europe. Springer, pp. 335–352.

Bagarello, V., Baiamonte, G., Castellini, M., Di Prima, S., Iovino, M., 2014. A comparison between the single ring pressure infiltrometer and simplified falling head techniques. Hydrological Processes, 28, 18, 4843–4853.

Baran, N., Cerdan, O., King C., Saplairoles, M., Thiery, D., 2006. Appui aux actions SCHAPI - BVNE Gardon d’Anduze et Somme, Bassin versant du Touch Rapport « annuel » année 4 janvier 2006 - décembre 2006, BRGM/RP-54996-FR, décembre 2006, 156 pp., http://infoterre.brgm.fr/rapports/RP-54996-FR.pdf

Bonell, M., Purandara, B.K., Venkatesh, B., Krishnaswamy, J., Acharya, H.A.K., Singh, U.V., Jayakumar, R., Chappell, N., 2010. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology. Journal of Hydrology, 391, 1–2, 47–62.

Bonnet, S., 2012. Cartographie des zones potentielles de production ou d’accumulation du ruissellement de surface en région cévenole. Master 2 « Eau et ressources », Université de Montpellier 2, 98 pp (In French.), available at http://cemadoc.irstea.fr/oa/PUB00035698-cartographie-deszones-potentielles-production-acc.html

Braud, I., Ayral, P.-A., Bouvier, C., Branger, F., Delrieu, G., Le Coz, J., Nord, G., Vandervaere, J.-P., Anquetin, S., Adamovic, M., Andrieu, J., Batiot, C., Boudevillain, B., Brunet, P., Carreau, J., Confoland, A., Didon Lescot, J.-F., Domergue, J.-M., Douvinet, J., Dramais, G., Freydier, R., Gérard, S., Huza, J., Leblois, E., Le Bourgeois, O., Le Boursicaud, R., Marchand, P., Martin, P., Nottale, L., Patris, N., Renard, B., Seidel, J.-L., Taupin, J.D., Vannier, O., Vincendon, B., Wijbrans, A., 2014. Multi-scale hydrometeorological observation and modelling for flash-flood understanding. Hydrology and Earth System Sciences, 18, 3733–3761.

Braud, I., Vandervaere, J.P., 2015. Analysis of infiltration tests performed in the Claduègne catchment in May-June 2012, contribution to WP3.4 “Documentation and mapping of soil hydraulic properties, soil geometry and vegetation cover of small catchments” of the FloodScale (2012–2015) ANR project, 66 pp. Available at http://mistrals.sedoo.fr/?editDatsId=1321

Cerdan, O., Desprats, JF, King, C., 2004. Appui aux actions SCHAPI au sein de l’arc cévenol. Rapport annuel BRGM/RP-53027-FR, mars 2004, 74 pp. http://infoterre.brgm.fr/rapports/RP-53027-FR.pdf

Clapp, R.B., Hornberger, G.M., 1978. Empirical equations for some soil hydraulic properties. Water Resources Research, 14, 4, 601–604.

Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20, 6, 682–690.

Davis, S.H., Vertessy, R.A., Silberstein, R.P., 1999. The sensitivity of a catchment model to soil hydraulic properties obtained by using different measurement techniques. Hydrological Processes, 13, 5, 677–688.

Desprats, J.F., Baran, N., King, C., Ayral, PA, Petelet, E., 2005. Appui aux actions SCHAPI - Gardon d’Anduze, Avène, Touch - Rapport « annuel » 2005 BRGM/RP-53901-FR, Avril, 2005, 120 pp ? http://infoterre.brgm.fr/rapports/RP-53901-FR.pdf

Desprats, J.F., Aubert, M., Baghdadi, N., Baran, N., 2007. Appui aux actions SCHAPI - BVNE Gardon d'Anduze et Somme, Bassin versant du Touch, bassin de Nîmes, Rapport annuel « année 5 »-décembre 2007, BRGM/RP-55869-FR, décembre 2007, 170 pp., http://infoterre.brgm.fr/rapports/RP-55869-FR.pdf

Desprats, J.F., Baran, N., Cerdan, O., Fleury, P., Ladouche, B., 2008. Appui aux actions SCHAPI - BVNE Gardon d'Anduze et Somme, Bassin versant du Touch, bassin de Nîmes, Rapport annuel « année 5 »-décembre 2008, BRGM/RP-56745-FR, décembre 2008, 133 pp., http://infoterre.brgm.fr/rapports/RP-56745-FR.pdf

Desprats, J.-F., Cerdan, O, King, C, Marchandise, A., 2010. Cartographie de la perméabilité des sols pour l’aide à la prévision des crues; cas d’étude sur le Gardon d’Anduze. La Houille Blanche, 32–38.

Dunne, T., Black, R.D., 1970. Partial area contributions to storm runo in a small New-England watershed. Water Resources Research, 6, 5, 1296–1311.

Ferrer Julià, M., Estrela Monreal, T., Sánchez del Corral Jiménez, A., García Meléndez, E., 2004. Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma, 123, 3–4, 257–277.

Garambois, P.A., Roux, H., Larnier, K., Castaings, W., Dartus, D., 2013. Characterization of process-oriented hydrologic model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments. Hydrology and Earth System Sciences, 17, 2305–2322.

Gaume, E., Bouvier, C., 2004. Analyse hydro-pluviométrique des crues du Gard et du Vidourle des 8 et 9 Septembre 2002. La Houille Blanche, 6, 99–106.

Gonzalez-Sosa, E., Braud, I., Dehotin, J., Lassabatère, L., Angulo-Jaramillo, R., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S., Michel, K., 2010. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrological Processes, 24, 17, 2382–2399.

Horton, R.E., 1933. The role of infiltration in the hydrologic cycle. Transactions – American Geophysical Union, 14, 1, 446–460.

Jarvis, N., 2008. Near-saturated hydraulic properties of macroporous soils. Vadose Zone Journal, 7, 1302–1310.

Jarvis, N., Koestel, J., Messing, I., Moeys, J., Lindahl, A., 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci., 17, 12, 5185–5195.

Jorda, H., Bechtold, M., Jarvis, N., Koestel, J., 2015. Using boosted regression trees to explore key factors controlling saturated and near-saturated hydraulic conductivity. European Journal of Soil Science, 66, 4, 744–756.

Laganier, O., Ayral, P.A., Salze, D., Sauvagnargues, S., 2014. A coupling of hydrologic and hydraulic models appropriate for the fast floods of the Gardon River basin (France). Nat. Hazards Earth Syst. Sci., 14, 11, 2899–2920.

Lassabatère, L., Angulo-Jaramillo, R., Soria-Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments. Soil Science Society of America Journal, 70, 2, 521–532.

Manus, C., Anquetin, S., Braud, I., Vandervaere, J.P., Viallet, P., Creutin, J.D., Gaume, E., 2009. A modelling approach to assess the hydrological response of small Mediterranean catchments to the variability of soil characteristics in a context of extreme events. Hydrology and Earth System Sciences, 13, 79–87.

Mohanty, B., Kanwar, R.S., Everts, C.J., 1994. Comparison of saturated hydraulic conductivity measurement methods for a Glacial-Till soil. Soil Science Society of America Journal, 58, 3, 672–677.

Naulin, J.P., Payrastre, O., Gaume, E., 2013. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France. Journal of Hydrology, 486, 88–99.

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rawls, W.J., Brakensiek, D.L., 1985. Prediction of soil water properties for hydrologic modeling. In: Jones, E.B., Ward, T.J. (Eds.): Watershed Management in the Eighties. ASCE, Denver, pp. 293–299.

Reynolds, W.D., Elrick, D.E., 1991. Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J., 54, 1233–1241.

Ronayne, M.J., Houghton, T.B., Stednick, J.D., 2012. Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. Journal of Hydrology, 458, 103–109.

Roux, H., Labat, D., Garambois, P.A., Maubourguet, M.M., Chorda, J., Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Natural Hazards and Earth System Sciences, 11, 9, 2567–2582.

Saulnier, G.M., Le Lay, M., 2009. Sensitivity of flash-flood simulations on the volume, the intensity, and the localization of rainfall in the Cévennes-Vivarais region (France). Water Resources Research, 45, W10425, DOI: 10.1029/2008WR0069056.

Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 163–176.

Vandervaere, J.P., 1995. Caractérisation hydrodynamique du sol in situ par infiltrométrie à disques. Analyse critique des régimes pseudo-permanents, méthodes transitoires et cas des sols encroûtés. Université Joseph Fourier, Grenoble I, Grenoble, France, 9 Octobre 1995, 329 pp, available at https://tel.archives-ouvertes.fr/tel-00694150/

Vandervaere, J.P., Vauclin, M., Elrick, D.E., 2000. Transient flow from tension infiltrometers: II. Four methods to determine sorptivity and conductivity. Soil Science Society of America Journal, 64, 1271–1284.

Vannier, O., Anquetin, S., Braud, I., 2016. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: regional modelling study and process understanding. Journal of Hydrology, 541 Part A, 158–172.

Verbist, K.M.J., Cornelis, W.M., Torfs, S., Gabriels, D., 2013. Comparing methods to determine hydraulic conductivities on stony soils. Soil Science Society of America Journal, 77, 1, 25–42.

Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schapp, M.G., van Genuctchen, M.T., 2010. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic conductivity properties: a review. Vadose Zone Journal, 9, 795–820.

Vincendon, B., Édouard, S., Dewaele, H., Ducrocq, V., Lespinas, F., Delrieu, G., Anquetin, S., 2016. Modeling flash floods in southern France for road management purposes. Journal of Hydrology, 541 Part A, 190–205.

Xu, X., Lewis, C., Liu, W., Albertson, J.D., Kiely, G., 2012. Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: Comparison of BEST and Wu methods. Agricultural Water Management, 107, 34–41.

Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169–185.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 196 11
PDF Downloads 91 91 6