Lattice Boltzmann method used to simulate particle motion in a conduit

Open access

Abstract

A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM) employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.

Abbot, J.E., Francis, J.R.D., 1977. Saltation and suspension trajectories of solid grains in a water stream. Philos. Trans. R. Soc. London A, 284, 225–254.

Aidun C.K., Lu, Y., Ding, E.-J., 1998. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech., 373, 287–311.

Allen, M.P., Tildesley, D.J., 1987. Computer Simulation of Liquids. Clarendon, Oxford.

Ancey, C., Heyman, J., 2014. A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates. J. Fluid Mech., 744, 129–168.

Ansumali, S., Karlin, I.V., 2002. Entropy function approach to the lattice Boltzmann method. J. Stat. Phys., 107, 291–308.

Bhatnagar, P.L., Gross, E.P., Krook, M., 1954. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94, 3, 511–525.

Bialik, R.J., Nikora, V.I., Karpiński, M., Rowiński, P.M., 2015. Diffusion of bedload particles in openchannels flows: distribution of travel times and second-order statistics of particle trajectories. Env. Fluid Mech., 15, 1281–1292.

Bialik, R.J., Nikora V., Rowiński, P.M., 2012. 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow. Acta Geophys., 60, 6, 1639–1660.

Campagnol, J., Radice, A., Ballio, F., Nikora, V., 2015. Particle motion and diffusion at weak bed load: accounting for unsteadiness effects of entrainment and disentrainment. J. Hydr. Res., 53, 5, 633–648.

Chára, Z., Kysela, B., Dolanský, J., 2016. Saltation movement of large spherical particles. In: Proc. Int. Conf. of Numerical Analysis and Applied Mathematics 2016, Rodhes, Greece.

Chen, S., Doolen, G., 1998. Lattice Boltzmann method for fluid-flows. Ann. Rev. Fluid Mech., 30, 329–364.

Czernuszenko, W., 2009. Model of particle–particle interaction for saltating grains in water. Arch. Hydro-Eng. Env. Mech., 56, 101–120.

Dolanský, J., 2014. Simulation of particle motion in a closed conduit validated against experimental data. In: EFM14-Experimental Fluid Mechanics 2014, Český Krumlov (CZ). EPJ Web of Conferences, vol. 92, pp. 115–120.

Fathel, S., Furbish, D., Schmeeckle, M., 2015. Experimental evidence of statistical ensemble behaviour in bed load sediment transport. J. Geophys. Res. Earth Surf., 120, 11, 2298–2317.

Feng, Z.-G., Michaelides, E.E., 2004. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comp. Phys., 195, 2, 602–628.

Frisch, U., Hasslacher, B., Pomeau, Y., 1986. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett., 56, 1505–1508.

Izquierdo, S., Martínez-Lera, P., Fueyo, N., 2009. Analysis of open boundary effects in unsteady lattice Boltzmann simulations. Comput. Math. Appl., 58, 914–921.

Ladd, A.J.C., 1994. Particles generally pass through different stages of motion such as rolling, saltation or suspension. J. Fluid Mech., 271, 311–339.

Lallemand, P., Luo, L.-S., 2003. Lattice Boltzmann method for moving boundaries. J. Comp. Phys., 184, 406–421.

Latt, J., Chopard, B., 2006. Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul., 72, 165–168.

Liu, H., Ding, Y., Li, M., Lin P., Yu, M.H., Shu, A.P., 2015. A hybrid lattice Boltzmann method–Finite Difference Method model for sediment transport and riverbed deformation. Riv. Res. App., 31, 4, 447–456.

Lukerchenko, N., Chára, Z., Vlasák, P., 2006. 2D numerical model of particle-bed collision in fluid-particle flows over bed. J. Hydraul. Research, 44, 1, 70–78.

Lukerchenko, N., Piatsevich, S., Chára, Z., Vlasák, P., 2009. 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed, J. Hydrol. Hydromech., 57, 2, 100–112.

Karlin, I.V., Ansumali, S., Chikatamarla, 2006. Elements of the lattice Boltzmann method I: Linear advection equation. Commun. Comput. Phys., 1, 616–655.

Krithivasan, S., Wahal, S., Ansumali, S., 2014. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method. Phys. Rev. E 89, 033313.

Martin, I.M.B., Marinescu, D.C., Lynch, R.E., Baker, T.S., 1997. Identification of spherical virus particles in digitized images of entire micrographs. J. Struct. Biol., 120, 146–157.

Martinez, D.O., Matthaeus, W.H., Chen, S., 1994. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Phys. Fluids, 6, 1285.

McNamara, G.R., Zanetti, G., 1988. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett., 61, 2332–2335.

Niño, Y., García, M., 1994. Gravel saltation: 2. Modeling. Water Resources Res., 30, 6, 1915–1924.

Ryu, S., Ko, S., 2012. A comparative study of lattice Boltzmann and volume of fluid method for two dimensional multiphase flows. Nucl. Eng. Tech., 44, 6, 623–638.

Succi, S., 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon, Oxford.

Vlasák, P., Kysela, B., Chára, Z., 2012. Flow structure of coarse-grained slurry in a horizontal pipe. J. Hydrol. Hydromech., 60, 115–124.

Vlasák, P., Chára, Z., Kysela, B., Konfršt, J., 2013. Coarse grained particle flow in circular pipe. In: Proc. ASME Fluids Engineering Div. Summer Meeting, Incline Village, USA, vol. 1C.

Vlasák, P., Kysela, B., Chára, Z., 2014. Fully stratified particle-laden flow in horizontal circular pipe. Part. Sci. Tech., 32, 2, 179–185.

Yan, Y.Y., Zu, Y.Q., Dong, B., 2011. LBM, a useful tool for mesoscale modelling of single and multi-phase flow. Appl. Therm. Eng., 31, 649–655.

Wiberg, P.L., Smith, J.D., 1985. A theoretical model for saltating grains in water. J. Geophys. Res., 90, C4, 7341–7354.

Yu, Z., Fan, L.-S., 2010. Lattice Boltzmann method for simulating particle-fluid interactions. Particuology, 8, 539–543.

Yu, D., Mei, R., Shyy, W., 2005. Improved treatment of the open boundary in the method of lattice Boltzmann equation. Progr. Comput. Fluid Dyn., 5, 3–12.

Zou, Q., He, X., 1996. On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model. Phys. Fluids, 9, 1591–1598.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 111 10
PDF Downloads 52 52 3