Influence of soil particle shape on saturated hydraulic conductivity

Open access

Abstract

The aim of this paper is to define the correlation between the geometry of grains and saturated hydraulic conductivity of soils. The particle shape characteristics were described by the ζ0C index (Parylak, 2000), which expresses the variability of several shape properties, such as sphericity, angularity and roughness.

The analysis was performed on samples of four soils, which were characterised by the same grain size distribution and extremely different particle structure. The shape characteristics varied from ideally spherical, smooth grains (glass microbeads GM) to highly irregular and rough particles (fly ash FA).

For each soil, laboratory tests of saturated hydraulic conductivity (constant head test CHT and falling head test FHT) were performed. Additionally, an empirical analysis of effective pore diameter was conducted with use of the analytical models developed by Pavchich (Wolski, 1987) and Indraratna and Vafai (1997). The models were modified by introducing the ζ0C index.

Experiments have shown that saturated hydraulic conductivity depends on grains shape and surface roughness. This parameter decreases with the increase in the irregularity of soil particles. Moreover, it was proven that the ζ0C reflects the relationship between effective pore diameter and grain shape characteristics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aimrun W. Amin M.S.M. Eltaib S.M. 2004. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma 121 197-203.

  • Arasan S. Akbulut S. Hasiloglu S. A. 2011. The relationship between the fractal dimension and shape properties of particles. Journal of Civil Engineering 15 7 1219-1225.

  • Bowman E.T. Soga K. Drummond W. 2001. Particle shape characterisation using Fourier descriptor analysis. Geotechnique 51 6 545-554.

  • Brooks R. Corey A. 1964. Hydraulic properties of porous media. Hydrology Paper Colorado State University 3 1-27.

  • Cadergen R. 1997. Seepage Drainage and Flow Nets. 3rd ed. John Wiley and Sons New York 467 p.

  • Carrier D. 2003. Goodbye Hazen; Hello Kozeny-Carman. Technical notes. Journal of Geotechnical and Geoenvironmental Engineering 129 11 1054-1056.

  • Chmielewski M. 2006. Badania nad wpływem cech kształtu cząstek gruntów niespoistych na wybrane parametry ściśliwości. [The influence of particles shape of fine-grained noncohesive soils on the selected parameters of compressibility]. PhD Thesis. Wrocław 117 p. (In Polish.)

  • Cox M. Badhu M. 2008. A practical approach to grain shape quantification. Engineering Geology 96 1-16.

  • Cuisinier O. Auriol J.C. Borgne T.L. Deneele D. 2011. Microstructure and hydraulic conductivity of a compacted lime-treated soil. Engineering Geology 123 187-193.

  • Dawson A. 2008. Water in Road Structures - Movement Drainage and Effects. Springer Dordrecht 436 p.

  • Domokos G. Sipos A. Szabó T. Várkonyi P. 2011. Pebbles shapes and equilibria. Mathematical Geosciences 42 29-47.

  • EN 1997-2 2007. Eurocode 7 - Geotechnical design - Part 2: Ground investigation and testing.

  • Frosard A. 1979. Effect of sand grain shape on interparticle friction indirect measurements by Rowe’s stress dilatancy theory. Geotechnique 3 341-350.

  • Garboczi E.J. Cheok G.S. Stone W.C. 2006. Using LADAR to characterize the 3-D shape of aggregates: Preliminary results. Cement and Concrete Research 36 2006 1072-1075.

  • Garcia-Bengochea I. 1978. The Relation between Permeability and Pore Size Distribution of Compacted Clayey Silts: Interim Report. Joint Transportation Research Program Technical Report Series Purdue University West Lafayette Indiana 179 p.

  • Gori U. Mari M. 2001. The correlation between the fractal dimension and internal friction angle of different granular materials. Soils and Foundations 41 6 17-23.

  • Harr E. 1977. Mechanics of Particulate Media - a Probabilistic Approach. McGraw-Hill New York 543 p.

  • Head K. Epps R. 2011. Manual of Soil Laboratory Testing Vol. 2 Permeability Shear Strength and Compressibility Test. 3rd ed. Whittles Publishing Dunbeath Mill 480 p.

  • Hillel D. 2004. Introduction to Environmental Soil Physics. 1st ed. Academic Press San Diego 494 p.

  • Indraratna B. Vafai F. 1997. Analytical model for particle migration within base soil-filter system. Journal of Geotechnical and Geoenvironmental Engineering 123 2 100-109.

  • Indraratna B. Vafai F. Dilema E.L.G. 1996. An experimental study of the infiltration of a lateritic clay slurry by sand filters. Proceedings of the Institution of Civil Engineers. Geotechnical Engineering 119 2 75-83.

  • Jetel J. 1975. Hydrogeologická interpretace jednotlivých kategorií efektivní pórovitosti. [The hydrogeological interpretations of the effective porosity categories]. Ústřední Ústav Geologický Praha 39 p. (In Czech.)

  • Klípa V. Sněhota M. Dohnal M. 2015. New automatic minidisc infiltrometer: design and testing. Journal of Hydrology and Hydromechanics 63 2 110-116.

  • Lambe W. Whitman R. 1979. Soil Mechanics. John Wiley & Sons New York 553 p.

  • Lees G. 1964. New method for determining the angularity of particles. Sedimentology 3 2-21.

  • Mamok B. 2004. Wpływ zagęszczenia i nieregularności kształtu cząstek drobnoziarnistych gruntów niespoistych na wartości kąta tarcia wewnętrznego. [The influence of density and particles shape irregularities of fine-grained noncohesive soils on the internal friction angle]. PhD Thesis Wrocław 87 p. (In Polish.)

  • Masad E. 2005. Computations of particle surface characteristics using optical and X-ray CT image. Computational Material Science 34 406-424.

  • Nimmo J.R. 2005. Porosity and Pore Size Distribution. In: Hillel D. (Ed.): Encyclopedia of Soils in the Environment Vol. 3. Elsevier London pp. 295-303.

  • Parylak K. 2000. Charakterystyka kształtu cząstek drobnoziarnistych gruntów niespoistych i jej znaczenie w ocenie wytrzymałości. [Characteristic of particles shape of finegrained cohesionless soils and its significance in strength assessment]. Zeszyty Naukowe Politechniki Śląskiej no 90 Gliwice 130 p. (In Polish with English abstract.)

  • Parylak K. Zięba Z. 2012. Metoda określania parametrów przestrzeni porowej gruntów niespoistych z uwzględnieniem kształtu cząstek. [The method for determining the pore space parameters of non-cohesive soils including particles shape]. Inżynieria Morska i Geotechnika 4/2012 361-366. (In Polish with English abstract.)

  • Parylak K. Zięba Z. Bułdys A. Witek K. 2013. Weryfikacja wyznaczania współczynnika filtracji gruntów niespoistych za pomocą wzorów empirycznych w ujęciu ich mikrostruktury. [The verification of determining a permeability coefficient of non-cohesive soil based on empirical formulas including its microstructure]. Acta Scientarum Polonorum Architectura 12 2 43-51. (In Polish with English abstract.)

  • Pena A. A. Garcia-Rojo R. Herrmann H. J. 2007. Influence of particle shape on shape dense granular media. Granular Matter 9 279-291.

  • Rasband W.S. 1997-2016. ImageJ. U. S. National Institutes of Health Bethesda Maryland USA http://imagej.nih.gov/ij/.

  • Santamarina J.C. Cho G.C. 2004. Soil behaviour: The role of particle shape. In: Proc. Skempton Conf. Advances in Geotechnical Engineering Vol. 1 London pp. 604-617.

  • Sasal M.C. Andriulo A. Taboada M.A. 2006. Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas. Soil and Tillage Research 87 9-18.

  • Sheskin D.J. 2003. Handbook of Parametric and Nonparametric Statistical Procedures. 3rd ed. Chapman & Hall/CRC Boca Raton London New York Washington D.C. 1193 p.

  • Sinecen M. Makinaci M. Topal A. 2011. Aggregate classification by using 3D image analysis technique. Gazi University Journal of Science 24 4 773-780.

  • Thomas M.C. Wiltshire R.J. Williams A.T. 1995. The use of Fourier descriptors in the classification of particle shape. Sedimentology 42 635-645.

  • Tiab D. Donaldson E.C. 2016. Porosity and permeability. In: Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. 4th ed. Elsevier Amsterdam pp. 67-186.

  • Tran T.D. Cui Y.J. Tang A. M. Audiguier M. Cojean R. 2014. Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay. Journal of Rock Mechanics and Geotechnical Engineering 6 399-404.

  • Utkaeva V.F. 2007. Specific surface area and wetting heat of different soil types in European Russia. Eurasian Soil Science 40 11 1193-1202.

  • Valentin R. Sardini P. Mazurier A. Regnault O. Descostes M. 2016. Effective porosity measurements of poorly consolidated materials using non-destructive methods. Engineering Geology 205 24-29.

  • Vallejo L. 1995. Fractal analysis of granular materials. Geotechnique 45 159-163.

  • Wadell H. 1932. Volume shape and roundness of rock particles. The Journal of Geology 40 443-451.

  • White T.L. Williams P.J. 1999. The influence of soil microstructure on hydraulic properties of hydrocarboncontaminated freezing ground. Polar Record 35 25-32.

  • Wolski W. 1987. Filters Report General. In: Proc. Int. IX European Conference on Soil Mechanics and Foundation Engineering Vol. 3 Dublin pp. 1351-1366.

  • Yagiz S. 2001. Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel mixtures. Bulletin of Engineering Geology and Environment 60 321-323

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 2.023
5-year IMPACT FACTOR: 2.048

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 619 410 31
PDF Downloads 318 221 18