Modeling sediment concentration and discharge variations in a small Ethiopian watershed with contributions from an unpaved road

Christian D. Guzman 1 , Seifu A. Tilahun 2 , Dessalegn C. Dagnew 2 , Assefa D. Zegeye 1 , Tigist Y. Tebebu 1 , Birru Yitaferu 3  and Tammo S. Steenhuis 2 , 4
  • 1 Department of Biological and Environmental Engineering, Cornell University, Ithaca, 206 Riley Robb Hall, NY 14853-5701, United States of America
  • 2 Faculty of Civil and Water Resources Engineering, Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
  • 3 Amhara Regional Agriculture Research Institute, Bahir Dar, Ethiopia
  • 4 Department of Biological and Environmental Engineering, Cornell University, Ithaca, 206 Riley Robb Hall, NY 14853-5701, USA Ethiopia

Abstract

Drainage of paved and unpaved roads has been implicated as a major contributor of overland flow and erosion in mountainous landscapes. Despite this, few watershed models include or have tested for the effect roads have on discharge and sediment loads. Though having a model is an important step, its proper application and attention to distinct landscape features is even more important. This study focuses on developing a module for drainage from a road and tests it on a nested watershed (Shanko Bahir) within a larger previously studied site (Debre Mawi) that receives overland flow contributions from a highly compacted layer of soil on an unpaved road surface. Shanko Bahir experiences a sub-humid monsoonal climate and was assessed for the rainy seasons of 2010, 2011, and 2012. The model chosen is the Parameter Efficient Distributed (PED) model, previously used where saturation-excess overland flow heavily influences discharge and sediment concentration variation, though infiltration-excess occasionally occurs. Since overland flow on unpaved surfaces emulates Hortonian flow, an adjustment to the PED model (the developed module) advances possible incorporation of both flow regimes. The modification resulted in similar modeling performance as previous studies in the Blue Nile Basin on a daily basis (NSE = 0.67 for discharge and 0.71 for sediment concentrations). Furthermore, the road while occupying a small proportion of the sub-watershed (11%) contributed importantly to the early discharge and sediment transport events demonstrating the effect of roads especially on sediment concentrations. Considerations for the dynamic erodibility of the road improved sediment concentration simulation further (NSE = 0.75). The results show that this PED modeling framework can be adjusted to include unpaved compacted surfaces to give reasonable results, but more work is needed to account for contributions from gullies, which can cause high influxes of sediment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abiy, A.Z., 2009. Geological Controls in the Formations and Expansions of Gullies over Hillslope Hydrological Processes in the Highlands of Ethiopia, Northern Blue Nile Region. Cornell University, Ithaca.

  • Anderson, D.M., MacDonald, L.H., 1998. Modelling road surface sediment production using a vector geographic information system. Earth Surf. Process. Landf., 23, 95-107.

  • Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: Model development. J. Amer. Water Resour. Assoc., 34, 73-89.

  • Bayabil, H.K., Tilahun, S.A., Collick, A.S., Yitaferu, B., Steenhuis, T.S., 2010. Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of the Maybar watershed. Ecohydrology, 3, 457-466. DOI: 10.1002/eco.170.

  • Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 43-69.

  • Bewket, W., Sterk, G., 2003. Assessment of soil erosion in cultivated fields using a survey methodology for rills in the Chemoga watershed, Ethiopia. Agric. Ecosyst. Environ., 97, 81-93. DOI: 10.1016/S0167-8809(03)00127-0.

  • Burt, T.P., McDonnell, J.J., 2015. Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resour Res., 51, 5919-5928, DOI: 10.1002/2014WR016839.

  • Buytaert, W., De Bièvre, B., Wyseure, G., Deckers, J., 2004. The use of the linear reservoir concept to quantify the impact of changes in land use on the hydrology of catchments in the Andes. Hydrol. Earth Sys. Sci., 8, 108-114.

  • Betrie, G.D., Mohamed, Y.A., van Griensven, A., Srinivasan, R., 2011. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol. Earth Syst. Sci., 15, 807-818. DOI: 10.5194/hess-15-807-2011.

  • Bingner, R.L., Theurer, F.D., 2007. Research: AGNPS. US Department of Agriculture-Agriculture Research Service. [Online]. Available: <http://www.ars.usda.gov/Research/docs.htm?docid=5199>. Accessed 9 December 2014.

  • Burroughs, E.R., Jr., Watts, F.J., Haber, D.F., 1984. Surfacing to reduce erosion of forest roads built in granitic soils. In: C.L. O’Loughlin, A.J. Pierce (Eds.): Proc. of a Symposium on Effects of Forest Land Use on Erosion and Slope Stability, 7-11 May 1984, University of Hawai’i, East-West Center, Honolulu, HI, pp. 255-264.

  • Caballero, L.A., Easton, Z.M., Richards, B.K., Steenhuis, T.S., 2013. Evaluating the bio-hydrological impact of a cloud forest in Central America using a semi-distributed water balance model. J. Hydrol. Hydromech., 61, 9-20.

  • Ciesiolka, C.A., Coughlan, K.J., Rose, C.W., Escalante, M.C., Hashim, G.M., Paningbatan, E.P., Sombatpanit, S., 1995. Methodology for a multi-country study of soil erosion management. Soil Technol., 8, 179-192. DOI: 10.1016/0933-3630(95)00018-6.

  • Collick, A.S., Easton, Z.M., Ashagrie, T., Biruk, B., Tilahun, S., Adgo, E., Awulachew, S.B., Zeleke, G., Steenhuis, T.S., 2009. A simple semi-distributed water balance model for the Ethiopian highlands. Hydrol. Process., 23, 3718-3727.

  • Descheemaeker, K., Raes, D., Nyssen J., Poesen, J., Haile, M., Deckers, J., 2009. Changes in water flows and water productivity upon vegetation regeneration on degraded hillslopes in northern Ethiopia: a water balance modelling exercise. Rangeland J., 31, 237-249. http://dx.doi.org/10.1071/RJ09010.

  • Dooge, J.C.I., 1986. Looking for hydrological laws. Water Resour. Res., 22, 9, 46S-58S.

  • Dunne, T., 1978. Field studies of hillslope flow processes. In: Kirkby,M.J. (Ed.): Hillslope Hydrology, John Wiley, New York, pp. 227-293.

  • Dunne, T., 1983. Relation of field studies and modeling in the prediction of storm runoff. J. Hydrol., 65, 25-48.

  • Dunne, T., Black, R.D., 1970. Partial area contributions to storm runoff in a small New England watershed. Water Resour. Res., 6, 1296-1311.

  • Dunne, T., Dietrich, W., 1982. Sediment sources in tropical drainage basins. In: Kussow, W. (Ed.): Soil Erosion and Conservation in the Tropics. American Society of Agronomy, Madison, pp. 41-53.

  • Easton, Z.M., Fuka, D.R., White, E.D., Collick, A.S., Biruk Ashagre, B., McCartney, M., Awulachew, S.B., Ahmed, A. A., Steenhuis, T.S., 2010. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci., 14, 1827-1841, DOI: 10.5194/hess-14-1827-2010.

  • Guzman, C.D., Tilahun, S.A., Zegeye, A.D., Steenhuis, T.S., 2013. Suspended sediment concentration-discharge relationships in the (sub-) humid Ethiopian highlands. Hydrol. Earth Syst. Sci., 17, 1067-1077. DOI: 10.5194/hess-17-1067-2013.

  • Hairsine, P.B., Rose, C.W., 1992. Modeling water erosion due to overland flow using physical principles 1. Sheet flow. Water Resour. Res., 28, 237-243.

  • Haith, D., Shoemaker, L.L., 1987. Generalized Watershed Loading Functions for stream flow nutrients, J. Am. Water Resour. As., 23, 471-478. DOI: 10.1111/j.1752-1688.1987.tb00825.x.

  • Harden, C.P., 1992. Incorporating roads and footpaths in watershed- scale hydrologic and soil erosion models. Physical Geography, 13, 368-385.

  • Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., Moeyersons, J., 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. Land Degrad. Dev., 24, 188-204.

  • Hengsdijk, H., Meijerink, G., Mosugu, M., 2005. Modelling the effect of three soil and water conservation practices in Tigray, Ethiopia. Agric. Ecosyst. Environ., 105, 29-40.

  • Hewlett, J.D., Hibbert, A.R., 1967. Factors affecting the response of small watersheds to precipitation in humid areas. In: Sopper, W.E., Lull, H.W. (Eds.): Proc. Int. Symposium on Forest Hydrology. Pergamon, Oxford, pp. 275-290.

  • Hurni, H., 1998. Agroecological Belts of Ethiopia: Explanatory notes on three maps at a scale of 1:100,000,000. Soil Conservation Research Programme Research report. Centre for Development and Environment, University of Bern, Switzerland.

  • ISRIC, 2014. International Soil Reference and Information Center. World Soil Information. Last access 22 Nov 2014. < www.isric.org>.

  • Kirkby, M.J., Chorley, R.J., 1967. Throughflow, overland flow and erosion. Int. Assoc. Sci. Hydrol. Bull., 12, 5-21.

  • Krysanova, V., Müller-Wohlfeil, D.-I., Becker, A., 1998. Development and test of a spatially distributed hydrological/ water quality model for mesoscale watersheds. Ecol. Model., 106, 263-289.

  • Legates, D.R., Mahmood, R., Levia, D.F., DeLiberty, T.L., Quiring, S.M., Houser, C., Nelson, F.F., 2011. Soil moisture: A central and unifying them in physical geography. Prog. Phys. Geog., 35, 65-86.

  • Liu, B.M., Collick, A.S., Zeleke, G., Adgo, E., Easton, Z.M., Steenhuis, T.S., 2008. Rainfall-discharge relationships for a monsoonal climate in the Ethiopian highlands. Hydrol. Process., 22, 1059-1067. DOI:10.1002/hyp.7022.

  • McDonnell, J.J., Sivapalan, M., Vache, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M.L., Selker, J., Weiler, M., 2007. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res., 43, W07301. DOI: 10.1029/2006WR005467.

  • Mekonnen, M., Melesse, A.M., 2011. Soil erosion mapping and hotspot area identification using GIS and remote sensing in northwest Ethiopian highlands, near Lake Tana, In: Melesse, A. (Ed.): Nile River Basin: Hydrology, Climate, and Water Use. Chapter 10. Springer Science Publisher, pp. 207-224, DOI: 10.1007/978-94-007-0689-7_10.

  • Mekonen, M.A., Wörman, A., Dargahi, B., Gebeyehu, A., 2009. Hydrological modelling of Ethiopian catchments using limited data. Hydrol. Process., 23, 3401-3408.

  • Mohammed, H., Yohannes, F., Zeleke, G., 2004. Validation of agricultural non-point source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia. Int. J. Appl. Earth Obs., 6, 97-109. DOI: 10.1016/j.jag.2004.08.002.

  • Montgomery, D.R., 1994. Road surface drainage, channel initiation, and slope instability. Water Resour. Res., 30, 1925-1932.

  • Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Vieth, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T. A.S.A.B.E., 50, 885-900.

  • Nash, J., Sutcliffe, J., 1970. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol., 10, 282-290.

  • Nyssen, J., Poesen, J., Moeyersons, J., Luyten, E., Veyret-Picot, M., Deckers, J., Haile, M., Govers, G. 2002. Impact of road building on gully erosion risk: a case study from the Northern Ethiopian Highlands. Earth Surface Processes and Landforms, 27, 1267-1283.

  • Nyssen, J., Haregeweyn, N., Descheemaeker, K., Gebremichael, D., Vancampenhout, K., Poesen, J., Haile, M., Moeyersons, J., Buytaert, W., Naudts, J., Deckers, J., Govers, G., 2006. Comment on ‘‘Modelling the effect of soil and water conservation practices in Ethiopia’’ [Agric Ecosyst. Environ. 105 29-40] Agric. Ecosyst. Environ., 114, 407-411.

  • Rhoads, B.L., 1995. Stream power: a unifying theme for urban fluvial geomorphology. In: Herricks, E.E. (Ed.): Stormwater Runoff and Receiving Systems Impact, Monitoring, and Assessment. CRC Press, Boca Raton, FL, pp. 65-75.

  • Savenije, H.H.G., 2010. HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)". Hydrol. Earth Syst. Sci., 14, 2681-2692. DOI: 10.5194/hess-14-2681-2010.

  • Schuster, W.D., Bonta, J., Thurston, H., Warnemuende, E., Smith, D.R., 2005. Impacts of impervious surface on watershed hydrology: A review. Urban Water J., 2, 263-275.

  • SCS, 1956. National Engineering Handbook, Section 4: Hydrology. Soil Conservation Service, USDA, Washington, D.C., 1956.

  • Setegn, S.G., Dargahi, B., Srinivasan, R., Melesse, A.M., 2010. Modeling of sediment yield from Anjeni-Gauged Watershed, Ethiopia using SWAT Model. J. Am. Water Resour. As., 46, 3, 514-526. DOI: 10.1111/j.1752-1688.2010.00431.x.

  • Steenhuis, T.S., Van der Molen, W.H., 1986. The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J. Hydrol., 84, 221-229.

  • Steenhuis, T.S. Collick, A.S., Easton, Z.M., Leggesse, E.S., Bayabil, H.K., White, E.D., Awulachew, S.B., Adgo, E., Ahmed, A.A., 2009. Predicting discharge and sediment for the Abay (Blue Nile) with a simple model. Hydrol. Process., 23, 3728-3737. DOI: 10.1002/hyp.7513.

  • Steenhuis, T.S., Hrncir, M., Poteau, D., Romero Luna, E.J., Tilahun, S.A., Caballero, L.A., Guzman, C.D., Stoof, C.R., Sanda, M., Yitaferu, B., Cislerova, M., 2013. A saturated excess runoff pedotransfer function for vegetated watersheds. Vadose Zone J., 12. DOI: 10.2136/vzj2013.03.0060.

  • Tebebu, T.Y., Abiy, A.Z., Zegeye, A.D., Dahlke, H.E., Easton, Z.M., Tilahun, S., Collick, A.S., Kidanu, S., Moges, S., Dadgari, F., Steenhuis, T.S., 2010. Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia. Hydrol. Earth Syst. Sci., 14, 2207-2217. DOI: 10.5194/hess-14-2207-2010.

  • Tebebu, T.Y., Steenhuis, T.S., Dagnew, D.C., Guzman, C.D., Bayabil, H.K., Zegeye, A.D., Collick, A.S., Langan, S., McAllister, C., Langendoen, E.J., Yitaferu, B., Tilahun, S.A., 2015. Improving efficacy of landscape interventions in the (sub) humid Ethiopian highlands by improved understanding of runoff processes. Front. Earth Sci., 3. DOI: 10.3389/feart.2015.00049.

  • Teshome, A., Rolker, D., De Graaff, J., 2013. Financial viability of soil and water conservation technologies in northwestern Ethiopian highlands. Appl Geogr., 37, 139-149.

  • Teweldebrihan, M.D., 2014. Optimizing intensified runoff from roads for supplemental irrigation: Tigray Region, Ethiopia. M.S. Thesis. UNESCO-IHE, Institute for Water Education, Delft, the Netherlands

  • Thornthwaite, C.W., Mather, J.R., 1955. The water balance. Publ. Climatol., 8.

  • Tibebe, D., Bewket, W., 2011. Surface runoff and soil erosion estimation using the SWAT model in the Keleta Watershed, Ethiopia. Land Degrad. Dev., 22, 551-564. DOI: 10.1002/ldr.1034.

  • Tilahun, S.A., Guzman C.D., Zegeye, A.D., Engda, T.A., Collick, A.S., Rimmer, Steenhuis, T.S., 2013a. An efficient semi-distributed hillslope erosion model for the sub-humid Ethiopian Highlands. Hydrol. Earth Syst. Sci., 17, 1051-1063. DOI: 10.5194/hess-17-1051-2013.

  • Tilahun, S.A., Mukundan, R., Demisse, B.A., Engda, T.A., Guzman, C.D., Tarakegn, B.C., Easton, Z.M, Collick, A.S., Zegeye, A.D., Schneiderman, E.M., Parlange, J-.Y., Steenhuis, T.S., 2013b. A Saturation Excess Erosion Model. T. A.S.A.B.E., 56, 681-695. DOI: 10.13031/2013.42675.

  • Tilahun, S.A., Guzman, C.D., Zegeye, A.D., Steenhuis, T.S., 2015. Distributed discharge and sediment concentration predictions in the sub-humid Ethiopian Highlands: the Debre Mawi Watershed. Hydrol. Process., 29, 1817-1828. DOI: 10.1002/hyp.10298.

  • Tilahun, S.A., Ayana, E.K., Guzman, C.D., Dagnew, D.C., Zegeye, A.Z., Tebebu, T.Y., Yitaferu, B., Steenhuis, T.S., 2016. Revisiting storm runoff processes in the Upper Blue Nile Basin: The Debre Mawi Watershed. Catena, 143, 47-56.

  • Van Griensven, A., Ndomba, P., Yalew, S., Kilonzo, F., 2012. Critical review of SWAT applications in the upper Nile basin countries. Hydrol. Earth Syst. Sci., 16, 3371-3381. DOI: 10.5194/hess-16-3371-2012.

  • Vanmaercke, M., Zenebe, A., Poesen, J., Nyssen, J., Verstraeten, G., Deckers, J., 2010. Sediment dynamics and the role of flashfloods in sediment export from mediumsized catchments: a case study from the semi-arid tropical highlands in northern Ethiopia. J. Soil Sediments, 10, 611-627.

  • Walraevens, K., Vandecasteele, I., Martens, K., Nyssen, J., Moeyersons, J., Gebreyohannes, T., Smedt, F., Poesen, J., Deckers, J., Van Camp, M., 2009. Groundwater recharge and flow in a small mountain catchment in northern Ethiopia. Hydrol. Sci. J., 54, 739-753. DOI: 10.1623/hysj.54.4.739.

  • Williams, J.R., Jones, C.A., Dyke, P.T., 1984. A modeling approach to determining the relationship between erosion and soil productivity. Trans. A.S.A.E., 27, 129-144.

  • White, E.D., Easton, Z.M., Fuka, D.R., Collick, A.S., Adgo, E., McCartney, M., Awulachew, S.B., Selassie, Y.G., Steenhuis, T.S., 2011. Development and application of a physically based landscape water balance in the SWAT model. Hydrol. Process., 25, 915-925. DOI: 10.1002/hyp.7876.

  • Yesuf, H.M., Assen, M., Alamirew, T., Melesse, A.M., 2015. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena, 127, 191-205.

  • Yu, B., Rose, C.W., Ciesiolka, C.A.A., Coughlan, K.J., Fentie, B., 1997. Toward a framework for runoff and soil loss prediction using GUEST technology. Aust. J. Soil Res., 35, 1191-212.

  • Zeleke, G., 2011. Application and adaptation of WEPP to the traditional farming system of the Ethiopian highlands. Paper presented at the Conference of the International Soil Conservation Organization, Lafayette, 24-28 May 1999.

  • Zenebe, A., Vanmaercke, M., Poesen, J., Verstraeten, G., Haregeweyn, N., Haile, M., Amare, K., Deckers, J., Nyssen, J., 2013. Spatial and temporal variability of river flows in the degraded semi-arid tropical mountains of northern Ethiopia. Z. Geomorphol., 57, 143-169.

  • Ziegler, A.D., Giambelluca, T.W., 1997. Importance of rural roads as source areas for runoff in mountainous areas of northern Thailand. J. Hydrol., 196, 204-229.

  • Ziegler, A.D., Sutherland, R.A., Giambelluca, T.W., 2000. Partitioning total erosion on unpaved roads into splash and hydraulic components: The roles of interstorm surface preparation and dynamic erodibility. Water Resour. Res., 36, 2787-2791.

  • Ziegler, A.D., Sutherland, R.A., Giambelluca, T.W., 2001. Acceleration of Horton overland flow and erosion by footpaths in an upland agricultural watershed in northern Thailand. Geomorphol., 41, 249-262.

OPEN ACCESS

Journal + Issues

Search