Identifying the relationships of climate and physiological responses of a beech forest using the Standardised Precipitation Index: a case study for Slovakia

Open access

Abstract

The paper presents relationship between the Standardised Precipitation Index (SPI) and physiological responses of individual trees in a beech stand using an example of an experimental plot in Bienska valley (Zvolen, Slovakia). SPI is a widely used tool for monitoring both short-term and long-term droughts, and for the assessments of drought impacts on agriculture. Due to the complex ecosystem bonds, monitoring of drought in forests often requires a sophisticated technological approach. The aim of the paper was to correlate the SPI on the physiological responses of trees that were recorded during the performed physiological research (sap flow, and stem circumference increment) at the site in the growing seasons (May to September) of the years 2012-2014. The results revealed a relationship between the index and the physiological responses, although the problem with the impact of other environmental factors has also come up. The secondary correlation, in which soil water potential that significantly affects physiological responses of forest tree species was used as a dependent variable, showed a tighter relationship with the SPI. We found the highest correlation between the soil water potential and the values of SPI aggregated for five weeks. This indicates that the beech forest has a five week resistance to drought stress. The results also enable simple monitoring of the initiation of the drought stress by applying SPI for five weeks.

Abramowitz, M., Stegun, I.A., 1965. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, Inc., New York, 1046 p.

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., Mcdowell, N., Vennetier, M. et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag., 259, 4, 660-684.

Betsch, P., Bonal, D., Breda, N., Montpied, P., Peiffer, M., Tuzet, A., Granier, A., 2011. Drought effects on water relations in beech: The contribution of exchangeable water reservoirs. Agr. Forest Meteorol., 151, 5, 531-543.

Botterill, L.C., Hayes, M.J., 2012. Drought triggers and declarations: science and policy considerations for drought risk management. Nat. Hazards, 64, 1, 139-151.

Büntgen, U., Frank, D.C., Kaczka, R.J., Verstege, A., Zwijacz- Kozica, T., Esper, J., 2007. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol., 27, 5, 689-702.

Büntgen, U., Brázdil, R., Frank, D., Esper, J., 2010. Three centuries of Slovakian drought dynamics. Clim. Dynam., 35, 2-3, 315-329.

Čermák, J., Kučera, J., Nadezhdina, N., 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18, 529-546.

Eitzinger, J., Trnka, M., Semerádová, D., Thaler, S., Svobodová, E., Hlavinka, P., Šiška, B., Takáč, J., Malatinská, L., Nováková, M., Dubrovský, M., Žalud, Z., 2013. Regional climate change impacts on agricultural crop production in Central and Eastern Europe-hotspots, regional differences and common trends. J. Agr. Sci.-Cambridge, 151, 6, 787-812.

Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P., Grünwald, T., Aubinet, M., Berbigier, P., Bernhof- er, C., Buchmann, N. et al., 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agr. Forest Meteorol., 143, 123-145.

Hayes, M.J., Svoboda, M.D., Wilhite, D.A., Vanyarkho, O.V., 1999. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc., 80, 3, 429-438.

Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J., Dobor, L., Barcza, Z., Konôpka, B., 2014. Climate change increases the drought risk in Central European forests: What are the options for adaptation? Forestry Journal, 60, 1, 5-18.

Holko, L., Parajka, J., Kostka, Z., Škoda, P., Blöschl, G., 2011. Flashiness of mountain streams in Slovakia and Austria. J. Hydrol., 405, 392-401.

Huang, Y., Zhao, P., Zhang, Z., Li, X., He, Ch., Zhang, R., 2009. Transpiration of Cyclobalanopsis glauca (Quercus glauca) stand measured by sap-flow method in a karst rocky terrain during dry season. Ecol. Res., 24, 4, 791.

Charru, M., Seynave, I., Morneau, F., Bontemps, J.D., 2010. Recent changes in forest productivity: An analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecol. Manag., 260, 5, 864-874.

Chirino, E., Bellot, J., Sanchéz, J.R., 2011. Daily sap flow rate as an indicator of drought avoidance mechanisms in five Mediterranean perennial species in semi-arid southeastern Spain. Trees, 25, 4, 593-606.

Ježík, M., Blaženec, M., Střelcová, K., Ditmarová, Ľ., 2011. The impact of the 2003 - 2008 weather variability on intraannual stem diameter changes of beech trees at a submontane site in Slovakia. Dendrochronologia, 29, 227-235.

Ježík, M., Blaženec, M., Letts, M.G., Ditmarová, Ľ., Sitková, Z., Střelcová, K., 2015. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrol., 8, 3, 378-386.

Kim, C.J., Park, M.J., Lee, J.H., 2014. Analysis of climate change impacts on the spatial and frequency patterns of drought using a potential drought hazard mapping approach. Int. J. Climatol., 34, 1, 61-80.

Klein, T., Rotenberg, E., Cohen-Hilaleh, E., Raz-Yaseef, N., Tatarinov, F., Preisler, Y. et al., 2014. Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest. Ecohydrol., 7, 2, 409-419.

Konôpka, B., Pajtík, J., Bošeľa, M., Hlásny, T., Sitková, Z., 2014. Inter- and intra- annual dynamics of height increment in young beech and spruce stands in relation to tree size and weather conditions. Lesnícky časopis - Forestry Journal, 60, 51-59.

Kučera, J., Jimenéz, M.S., Morales, D., Urban, J., 2011. Transpirace a průduchová vodivost Pinus canariensis za kontrastních podmínek dostupnosti půdní vody. [Transpiration and stomatal conductance of Pinus canariensis under different soil water availability]. In: Střelcová, K., Sitková, Z., Kurjak, D., Kmeť, J. (Eds.): Stres suchom a lesné porasty (Aktuálny stav a výsledky výskumu). [Drought stress and forests (Current status and research outcomes)]. Technical University in Zvolen, Zvolen, pp. 254-262. (In Slovak.)

Lichner, Ľ., Cerdà, A., Tesař, M., Rajkai, K., 2014. Biohydrology research after Landau 2013 conference. J. Hydrol. Hydromech., 62, 4, 253-257.

Matejka, F., Střelcová, K., Hurtalová, T., Gömöryová, E., Ditmarová, Ľ., 2009. Seasonal changes in transpiration and soil water content in a spruce primeval forest during a dry period. In: Střelcová, K. et al. (Eds.): Bioclimatology and natural hazards. Springer, 298 p.

McKee, T.B., Doesken, N.J.,J. Kleist, 1995. Drought monitoring with multiple time scales. In: Preprints 9th Conference on Applied Climatology, January 15-20, Dallas, Texas, pp. 233-236.

Moreira, E.E., Coelho, C.A., Paulo, A.A., Pereira, L.S., Mexia, J.T., 2008. SPI-based drought category prediction using loglinear models. J. Hydrol., 354, 1, 116-130.

Nam, W.H., Hayes, M.J., Svoboda, M.D., Tadesse, T., Wilhite, D.A., 2015. Drought hazard assessment in the context of climate change for South Korea. Agr. Water Manage., 160, 106-117.

Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P. et al., 2011. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron., 34, 2, 96-112.

Sitková, Z., Nalevanková, P., Střelcová, K., Fleischer, P.Jr., Ježík, M., Sitko, R., Pavlenda, P., 2014. How does soil water potential limit the seasonal dynamics of sap flow and circumference changes in European beech? Forestry Journal, 60, 1, 19-30.

Sivakumar, M., Motha, R., Das, H., 2005. Natural Disasters and Extreme Events in Agriculture. Springer, Berlin, 376 p.

Tesař, M., Šír, M., Lichner, Ľ., Zelenková, E., 2006. Influence of vegetation cover on thermal regime of mountainous catchments. Biologia, 61, Suppl. 19, S311-S314.

Tesař, M., Šír, M., Lichner, Ľ., Čermák, J., 2007. Plant transpiration and net entropy exchange on the Earth’s surface in a Czech watershed. Biologia, 62, 5, 547-551.

Trnka, M., Rötter, R.P., Ruiz-Ramos, M., Kersebaum, K.C., Olesen, J.E., Žalud, Z., Semenov, M.A., 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change, 4, 7, 637-643.

Wilhelmi, O.V., Hayes, M.J., Thomas, D.S., 2008. Managing drought in mountain resort communities: Colorado's experiences. Disaster Prev. Manag., 17, 5, 672-680.

Wilhite, D.A., Glantz, M.H., 1985. Understanding the Drought Phenomenon: The Role of Definitions. Water Int., 10, 3, 111-120.

Wu, H., Svoboda, M.D., Hayes, M.J., Wilhite, A., Wen, F., 2007. Appropriate application of the Standardized Precipitation Index in arid locations and dry seasons. Int. J. Climatol., 27, 65-79.

Zhang, Y., Peng, C., Li, W., Fang, X., Zhang, T., Zhu, Q. et al., 2013. Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges. Environ. Rev., 21, 2, 103-115.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 176 24
PDF Downloads 51 51 10