Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area

Open access


Extensive lowland floodplains cover substantial parts of the glacially formed landscape of Northern Germany. Stream power is recognized as a force of formation and development of the river morphology and an interaction system between channel and floodplain. In order to understand the effects of the river power and flood power, HEC-RAS models were set up for ten river sections in the Upper Stör catchment, based on a 1 m digital elevation model and field data, sampled during a moderate water level period (September, 2011), flood season (January, 2012) and dry season (April, 2012). The models were proven to be highly efficient and accurate through the seasonal roughness modification. The coefficients of determination (R2) of the calibrated models were 0.90, 0.90, 0.93 and 0.95 respectively. Combined with the continuous and long-term data support from SWAT model, the stream power both in-channel and on the floodplain was analysed. Results show that the 10-year-averaged discharge and unit stream power were around 1/3 of bankfull discharge and unit power, and the 10-year-peak discharge and unit stream power were nearly 1.6 times the bankfull conditions. Unit stream power was proportional to the increase of stream discharge, while the increase rate of unit in-channel stream power was 3 times higher than that of unit stream power on the floodplain. Finally, the distribution of the hydraulic parameters under 10-years-peak discharge conditions was shown, indicating that only 1-10% of flow stream was generated by floodplain flow, but 40-75% volume of water was located on the floodplain. The variation of the increasing rate of the stream power was dominated by the local roughness height, while the stream power distributed on the floodplain mainly depended on the local slope of the sub-catchment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Archer D.R. 1989. Flood wave attenuation due to channel and floodplain storage and effects on flood frequency. Floods Hydrol. Sedimentol. Geomorphol. Implic. John Wiley Sons N. Y. 1989 P:37-46.

  • Arnold J.G. Srinivasan R. Muttiah R.S. Williams J.R. 1998. Large area hydrologic modeling and assessment part I: model development1. JAWRA J. Am. Water Resour. Assoc. 34 73-89.

  • Barker D.M. Lawler D.M. Knight D.W. Morris D.G. Davies H.N. Stewart E.J. 2009. Longitudinal distributions of river flood power: the combined automated flood elevation and stream power (CAFES) methodology. Earth Surf. Process. Landf. 34 280-290.

  • Bates P.D. De Roo A.P.J. 2000. A simple raster-based model for flood inundation simulation. J. Hydrol. 236 54-77.

  • Birkhead A.L. James C.S. Kleynhans M.T. 2007. Hydrological and hydraulic modelling of the Nyl River floodplain Part 2: Modelling hydraulic behaviour. Water SA 33.

  • Brocca L. Melone F. Moramarco T. 2011. Distributed rainfall- runoff modelling for flood frequency estimation and flood forecasting. Hydrol. Process. 25 2801-2813.

  • Brunner G.W. 1995. HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 1.0.

  • Chow V. 1959. Open Channel Hydraulics. McGraw-Hill New York.

  • Christian J. Duenas-Osorio L. Teague A. Fang Z. Bedient P. 2013. Uncertainty in floodplain delineation: expression of flood hazard and risk in a Gulf Coast watershed. Hydrol. Process. 27 2774-2784.

  • Climatemps 2013. Average Temperatures in Schleswig. Kiel Germany.

  • Coffey R. Cummins E. Bhreathnach N. Flaherty V.O. Cormican M. 2010. Development of a pathogen transport model for Irish catchments using SWAT. Agric. Water Manag. 97 101-111.

  • Dankers R. Feyen L. 2009. Flood hazard in Europe in an ensemble of regional climate scenarios. J. Geophys. Res. Atmospheres 114.

  • Evans I.S. Hengl T. Gorsevski P. 2009. Chapter 22 Applications in Geomorphology. In: Hengl T. Reuter H.I. (Ed.): Developments in Soil Science Geomorphometry Concepts Software Applications. Elsevier pp. 497-525.

  • Gurnell A.M. Midgley P. 1994. Aquatic weed growth and flow resistance: Influence on the relationship between discharge and stage over a 25 year river gauging station record. Hydrol. Process. 8 63-73.

  • Hervouet J.-M. 2000. ℡EMAC modelling system: an overview. Hydrol. Process. 14 2209-2210.

  • Hicks F.E. Peacock T. 2005. Suitability of HEC-RAS for Flood Forecasting. Can. Water Resour. J. 30 159-174.

  • Horritt M.S. Bates P.D. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 268 87-99.

  • Jähnig S.C. Kuemmerlen M. Kiesel J. Domisch S. Cai Q. Schmalz B. Fohrer N. 2012. Modelling of riverine ecosystems by integrating models: conceptual approach a case study and research agenda. J. Biogeogr. 39 2253-2263.

  • Jain V. Preston N. Fryirs K. Brierley G. 2006. Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter River catchment New South Wales Australia. Geomorphology 74 297-317.

  • Johnston J.M. McGarvey D.J. Barber M.C. Laniak G. Babendreier J. Parmar R. Wolfe K. Kraemer S.R. Cyterski M. Knightes C. Rashleigh B. Suarez L. Ambrose R. 2011. An integrated modeling framework for performing environmental assessments: Application to ecosystem services in the Albemarle-Pamlico basins (NC and VA USA). Ecol. Model. 222 2471-2484.

  • Kasper K. 2005. Accuracy of HEC-RAS to Calculate Flow Depths and Total Energy Loss With and Without Bendway Weirs in a Meander Bend. MS Plan-B Rep. Colo. State Univ. Dep. Civ. Eng. Fort Collins CO.

  • Kiesel J. Schmalz B. Brown G. Fohrer N. 2013. Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment channel and reach. J. Hydrol. Hydromech. 61 334-346.

  • Knebl M.R. Yang Z.-L. Hutchison K. Maidment D.R. 2005. Regional scale flood modeling using NEXRAD rainfall GIS and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Manage. 75 325-336.

  • Knight D. Shiono K. 1996. River channel and floodplain hydraulics. Floodplain Process. 5 139-181.

  • Knighton A.D. 1999. Downstream variation in stream power. Geomorphology 29 293-306.

  • Kuemmerlen M. Domisch S. Schmalz B. Cai Q. Fohrer N. Jähnig S.C. 2012. Integrierte Modellierung von aquatischen Ökosystemen in China: Arealbestimmung von Makrozoobenthos auf Einzugsgebietsebene. Hydrol. Wasserwirtsch. HW 56 185-192.

  • Kundzewicz Z.W. Lugeri N. Dankers R. Hirabayashi Y. Döll P. Pińskwar I. Dysarz T. Hochrainer S. Matczak P. 2010. Assessing river flood risk and adaptation in Europe- review of projections for the future. Mitig. Adapt. Strateg. Glob. Change 15 641-656.

  • Lau T.L. Ghani A.A. 2012. Sustainable solutions for global crisis of flooding pollution and water scarcity. Int. J. River Basin Manag. 10 137-138.

  • LKN-SH 2012. Landesbetriebs für Küstenschutz Nationalpark und Meeresschutz Schleswig-Holstein: Discharge and water surface elevation data. Kiel Germany.

  • Luo Y. Arnold J. Allen P. Chen X. 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains Northwest China. Hydrol. Earth Syst. Sci. 16 1259-1267.

  • LVermGeoSH 1995. Landesamt für Vermessung und Geoinformation Schleswig-Holstein: Digitales Geländemodelle 1 (DGM 1). Kiel Germany.

  • Marchi L. Borga M. Cavalli M. Gaume E. 2010a. Stream power of selected recent flash floods in Europe in: EGU General Assembly Conference Abstracts. Presented at the EGU General Assembly Conference Abstracts p. 10226.

  • Marchi L. Borga M. Preciso E. Gaume E. 2010b. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 394 118-133.

  • Navratil O. Albert M.-B. Hérouin E. Gresillon J.-M. 2006. Determination of bankfull discharge magnitude and frequency: comparison of methods on 16 gravel-bed river reaches. Earth Surf. Process. Landf. 31 1345-1363.

  • O’Hare M.T. McGahey C. Bissett N. Cailes C. Henville P. Scarlett P. 2010. Variability in roughness measurements for vegetated rivers near base flow in England and Scotland.

  • J. Hydrol. 385 361-370.

  • Pappenberger F. Beven K. Horritt M. Blazkova S. 2005. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J. Hydrol. 302 46-69.

  • Parhi P.K. 2013. HEC-RAS Model for Mannnig’s Roughness: A Case Study. Open J. Mod. Hydrol. 03 97-101.

  • Parhi P.K. Sankhua R. Roy G. 2012. Calibration of channel roughness for Mahanadi River (India) using HEC-RAS model. J. Water Resour. Prot. 4.

  • Petit F. Gob F. Houbrechts G. Assani A.A. 2005. Critical specific stream power in gravel-bed rivers. Geomorphology 69 92-101.

  • Petrow T. Merz B. 2009. Trends in flood magnitude frequency and seasonality in Germany in the period 1951-2002. J. Hydrol. 371 129-141.

  • Posey J. 2009. The determinants of vulnerability and adaptive capacity at the municipal level: Evidence from floodplain management programs in the United States. Glob. Environ. Change 19 482-493.

  • Pott C.A. 2014. Integrated monitoring assessment and modeling of nitrogen and phosphorus pollution in a lowland catchment in Germany - A long-term study on water quality (PhD thesis). University of Kiel Kiel Germany.

  • Rhoads B.L. 1987. Stream Power Terminology. Prof. Geogr. 39 189-195.

  • Schmalz B. Kuemmerlen M. Strehmel A. Song S. Cai Q. Jähnig S. Fohrer N. 2012. Integrated modeling of aquatic ecosystems in China: ecohydrology and hydraulics. Hydrol. Wasserwirtsch. HW 56 169-184. (in German) Shih S.F. Rahi G.S. 1982. Seasonal variations of Manning’s roughness coefficient in a subtropical marsh. Trans. ASAE 25 116-119.

  • Song S. Schmalz B. Hörmann G. Fohrer N. 2012. Accuracy reproducibility and sensitivity of acoustic Doppler technology for velocity and discharge measurements in mediumsized rivers. Hydrol. Sci. J. 57 1626-1641.

  • Sponseller R.A. Grimm N.B. Boulton A.J. Sabo J.L. 2010. Responses of macroinvertebrate communities to long-term flow variability in a Sonoran Desert stream. Glob. Change Biol. 16 2891-2900.

  • Strehmel A. 2011. Model-based Hydraulic Analysis of Flow and Sediment Transport in the Changjiang Basin in the Poyang Lake Region China. University of Kiel Kiel Germany.

  • Thuiller W. 2003. BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9 1353-1362.

  • Vocal Ferencevic M. Ashmore P. 2012. Creating and Evaluating Digital Elevation Model-Based Stream-Power Map as a Stream Assessment Tool. River Res. Appl. 28 1394-1416.

  • Wu N. Tang T. Fu X. Jiang W. Li F. Zhou S. Cai Q. Fohrer N. 2010. Impacts of cascade run-of-river dams on benthic diatoms in the Xiangxi River China. Aquat. Sci. 72 117-125.

  • Yang J. Townsend R.D. Daneshfar B. 2006. Applying the HEC-RAS model and GIS techniques in river network floodplain delineation. Can. J. Civ. Eng. 33 19-28.

  • Zhang H. 2011. Sedimentation and Phosphorus Deposition in a Wetland Stream Complex (Duvenseebachniederung Ritzerau). University of Kiel Kiel Germany.

Journal information
Impact Factor

IMPACT FACTOR 2018: 2.023
5-year IMPACT FACTOR: 2.048

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 366 184 4
PDF Downloads 229 158 17