Criteria for selecting fluorescent dye tracers for soil hydrological applications using Uranine as an example

Open access

Abstract

Calibrating and verifying 2-D and 3-D vadose zone flow and transport models requires detailed information on water and solute redistribution. Among the different water flow and mass transfer determination methods, staining tracers have the best spatial resolution allowing visualization and quantification of fluid flow including preferential flow paths. Staining techniques have been used successfully for several decades; however, the hydrological community is still searching for an “ideal” vadose zone tracer regarding flow path visualization. To date, most research using staining dyes is carried out with Brilliant Blue FCF. Fluorescent dyes such as Uranine, however, have significant advantages over nonfluorescents which makes them a promising alternative. This paper presents the first analysis of key properties any fluorescent substance must possess to qualify as a staining fluorescent tracer in vadose zone hydrological applications. First, we summarize the main physico-chemical properties of Uranine and evaluate its staining tracer potential with conventional suitability indicators and visibility testing in a soil profile. Based on numerical analysis using the theory of fluorescence, we show that a low molar absorption coefficient is a crucial parameter to quantify concentration accurately. In addition, excitation of a tracer on wavelengths different from the maximum excitation wavelength can extend the linear range of the concentration-fluorescence relationship significantly. Finally, we develop criteria for evaluating the suitability of any potential fluorescent soil staining compound for soil hydrological applications: 1) high quantum yield, 2) low molar absorption coefficient, 3) fluorescence independent of temperature, 4) low photodecomposition rates, and 5) fluorescence stable across a wide range of pH values.

Adams, M.C., Davis, J., 1991. Kinetics of fluorescein decay and its application as a geothermal tracer. Geothermics, 20, 53-66.

Aeby, P., 1998. Quantitative imaging of tracer distributions in soil profiles. PhD thesis ETH No. 12951, Swiss Federal Inst. of Tech., Zurich (available at http://ecollection. library.ethz.ch/eserv/eth:22949/eth-22949-02.pdf as verified on 27. 11. 2012).

Aeby, P., Forrer, J., Steinmeier, C., Flühler, H., 1997. Image analysis for determination of dye tracer concentrations in sand columns. Soil Sci. Soc. of Am. J., 61, 33-35.

Aeby, P., Schultze, U., Braichotte, D., Bundt, M., Moser- Boroumand, F., Wydler, H., Fluhler, H., 2001. Fluorescence imaging of tracer distributions in soil profiles. Envir. Sci. Tech., 35, 753-760.

Alaoui, A., Caduff, U., Gerke, H.H., Weingartner, R., 2011. Preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone J., 10, 367-377.

Allaire, S.E., Roulier, S., Cessna, A.J., 2009. Quantifying preferential flow in soils: A review of different techniques. J. Hydrol., 378(1-2), 179-204.

Anderson, A.E., Weiler, M., Alila, Y., Hudson, R.O., 2009. Dye staining and excavation of a lateral preferential flow network. Hydrol. Earth Syst. Sci., 13, 935-944.

Baker, V.R., 1987. Peloflood hydrology and extraordinary flood events. J. Hydrol., 96(1-4), 79-99.

Bänninger, D., Lehmann, P., Flühler, H., Guglielmetti, M., 2006. Modeling the effect of soil water content and sorption on dye-tracer fluorescence. Eur. J. Soil Sci., 57, 808-815.

Behrens, H., Demuth, N., 1992. Measurement of light input into surface waters by photolysis of fluorescent dye tracer. Tracer hydrology, Proc. 6th Int. Symp. Water Tracing of the ATH 21-26 Sept. 1992, Karlsruhe, Rotterdam, Balkema, 49-56.

Bogner, C., Borken, W., Huwe, B., 2012. Impact of preferential flow on soil chemistry of a podzol. Geoderma, 175-176, 37-46.

Bundt, M., Widmer, F., Pesaro, M., Zayer, J., Blaser, P., 2001. Preferential flow paths: biological ‘hot spots’ in soils. Soil Biology & Biochemistry, 33, 729-738.

CRI (The Center for Research Information), 2004. Health effects of project shad chemical agent: Uranine dye. Contract No. IOM-2794-04-001. The National Academies, 49 pp.

Dunn, B., Vaupel, D.E., 1965. Effects of sample and fluorometer- compartment temperatures on fluorometer readings. U.S. Geol. Surv. Prof. Pap. 525D, Washington, 225-227.

Duwig, C., Delmas, P., Muller, K., Prado, B., Ren, K., Morin, H., Woodward, A., 2008. Quantifying fluorescent tracer distributions in allophonic soils to image solute transport. Eur. J. Soil Sci., 59, 94-102.

Everts, C.J., Kanwar, R.S., 1989. Comparison of tracer mobilities under laboratory and field conditions. J. Environ. Qual., 18, 491-498.

Flury, M., Flühler, H., 1994. Brilliant Blue FCF as dye tracer for solute transport studies - a toxicological overview. J. Environment. Quality, 23(5), 1108-1112 .

Flury, M., Flühler, H., Jury, W.A., Leuenberger, J., 1994. Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res., 30(7), 1945-1954.

Flury, M., Flühler, H., 1995. Tracer characteristics of Brilliant Blue FCF. Soil Sci. Soc. Am. J., 59(1), 22-27.

Flury, M., Wai, N.N., 2003. Dyes as tracers for vadoze zone hydrology. Rev. Geophys., 41, 1-37.

Förster, T., 1951. Fluorescence of organic substances. Vandenhoek and Ruprecht, Göttingen.

Forrer, I., Papritz, A., Kasteel, R., Fluhler, H., 2000. Quantifying dye tracers in soil profiles by image processing. Eur. J. Soil Sci., 51, 313-322.

Garrido, F., Ghodrati, M., Campbell, C.G., 2000. Method for in situ field calibration of fiber optic miniprobes. Soil Sci. Soc. Am. J., 64, 836-842.

Gerke, K., 2008. Visualization and quantification of preferential flow paths in forested hillslopes. Ph.D. Thesis, Slope Conservation Section, DPRI, Kyoto University.

Gerke, K.M., Sidle, R.C., Tokuda,Y., 2008. Sorption of Uranine on forest soils. Hydrological Research Letters, 2, 32-35.

German-Heins, J., Flury, M., 2000. Sorption of Brilliant Blue FCF in soils as affected by pH and ionic strength. Geoderma, 97, 87-101.

Ghodrati, M., Jury, W.A., 1992. A field study of the effects of soil and irrigation method on preferential flow of pesticides in unsaturated soil. J. Contam. Hydrol., 11, 101-125.

Gödeke, S., Richnow, H.-H., Weiβ, H., Fischer, A., Vogt, C., Borsdorf, H., Schirmer, M., 2006. Multi tracer test for the implementation of enhanced in-situ bioremediation at a BTEX-contaminated megasite. J. Comtam. Hydrol., 87, 211-236.

Gubareva, T.S., Gartsman, B.I., 2010. Estimating distribution parameters of extreme hydrometeorological characteristics by L-moments method. Water Resources, 37(4), 437-445.

Hangen, E., Gerke, H.H., Schaaf, W., Hüttl, R.F., 2004. Flow path visualization in a lignitic mine soil using iodine-starch staining. Geoderma,120, 121-135.

Heller, C.A., Henry, R.A., McLaughlin, B.A., Bliss, D.E., 1974. Fluorescence spectra and quantum yields: Quinine, Uranine, 9,10-Diphenylanthracene, and 9,10- Bis(phenylethynyl)anthracenes. Journal of Chemical and Engineering Data, 19(3), 214-219.

Hiramoto, R., Bernecky, J., Jurand, J., Hamlin, M., 1964. The effect of hydrogen ion concentration fluorescent labeled antibodies. J. Histochem. Cytochem., 12, 271-274.

Iverson, R.M., 2000. Landslide triggering by rain infiltration. Water Resour. Res., 36, 1897-1910.

Käss, W.A., 1994. Hydrological tracing practice on underground contaminations. Envir. Geol., 23, 23-29.

Käss, W.A., 1998. Tracing Technique in Geohydrology. A.A.Balkema, Rotterdam, Brookfield.

Kesavan, J., Doherty, R.W., 2001. Use of Fluorescein in aerosols studies. ECBT-TR-103. U.S. Army Edgewood Chemical Biological Center: Aberdeen Proving Ground. Report AD-A384058.

Kasteel, R., Vogel, H.-J., Roth, K., 2002. Effect of non-linear adsorption on the transport behaviour of Brilliant Blue in a field soil. Eur. J. Soil Sci., 53, 231-240.

Kotlyar, A.B., Borovok, N., Raviv, S., Zimanyi, L., Gutman, M., 1996. Fast redox perturbation of aqueous solution by photoexcitation of Pyranine. Photochem. Photobiol., 63, 448-454.

Kozlov, V.V., Sarzhevskii, A.M., 1975. Diffusion and salvation of fluorescent molecules in aqueous solutions. Appl. Spectroscopy J., Minsk, 22, 453-457. (In Russian.) Kung, K.-J.S., Steenhuis, T.S., Klavdiko, E.J., Gish, T.J., Bubenzer, G., Helling, C.S., 2000. Impact of preferential flow on the transport of adsorbing and non-adsorbing tracers. Soil Sci. Soc. Am. J., 64, 1290-1296.

Lakowitz, J.R., 1999. Principles of Fluorescence Spectroscopy. Second Edition. Kluwer Academic/Plenum Publishers.

Lyons, R.G., 1993. Identification and separation of water tracing dyes using pH response characteristics. J. Hydrol., 152, 13-29.

McNeil, J.D., Oldenborger, G.A., Schincariol, R.A., 2006. Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments. J. Contamin. Hydrol., 84, 36-54.

Mallants, D., Vanclooster, M., Feyen, J., 1996. Transect study on solute transport in a macroporous soil. Hydrol. Processes, 10, 55-70.

Mchedlov-Petrossyan, N.O., 1979. Ionization constant of fluorescien. J. Anal. Chem. USSR, 34, 812-815. (In Russian.) Mota, M.C., Carvalho, P., Ramalho, J., Liete, E., 1991. Spectrophotometric analysis of sodium fluorescein aqueous solutions, determination of molar coefficient. Int. Ophthalmol., 15, 321-326.

Persson, M., Haridy, S., Olsson, J., Wendt, J., 2005. Solute transport dynamics by high-resolution dye tracer experiments - image analysis and time moments. Vadose Zone J., 4, 856-865.

Rendell, D., Mowthorpe, D., 1987. Fluorescent and Phosphorescence Spectroscopy. John Wiley, London.

Romanchuk, M.D., Kenneth, G., 1982. Fluorescein: Physicochemical factor affecting fluorescence. Surv. Ophthalmol., 26, 269-283.

Rozwadowski, M., 1961. Effect of pH on fluorescence of fluorescein solutions. Acta Phys. Pol., 20, 1005-1017.

Schincariol, R.A., Herderick, E.E., Schwartz, F.W., 1993. On the application of image analysis to determine concentration distributions in laboratory experiments. J. Contam. Hydrol., 12, 15, 197-215.

Schmidt, W., 2005. Optical Spectroscopy in Chemistry and Life Sciences. Wiley-VCH.

Sidle, R.C., Kardos, L.T., van Genuchten, M.Th., 1977. Heavy metals transport model in a sludge-treated soil. J. Environ. Qual. 6, 438-443.

Sidle, R.C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., Shimizu, T. 2000. Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrol. Processes, 14, 369-385.

Simon, J.R., Gough, A., Urbanik, E., Wang, F., Lanni, F., Ware, B.R., Taylor, D.L., 1988. Analysis of Rhodamine and Fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery. Biophys. J., 54, 801-815.

Smart, P.L., Laidlaw, M.S., 1977. An evaluation of some fluorescent dyes for water tracing. Water Resour. Res., 13, 15-33.

Stampfli, M.,1983. Fluorescent staining substances. In: Introduction to Tracing Hydrology. 17-21 October, Geogr. Inst. der Univ. Bern.

Sudicky, E.A., Illman, W.A., 2011. Lessons learned from a suite of CFB borden experiments. Ground water, 49(5), 630-648.

Tsuboyama, Y., Sidle, R.C., Noguchi, S., Hosoda, I., 1994. Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resour. Res., 30(4), 879-890.

Vanderborght, J., Timmerman, A., Feyen, J., 2000. Solute transport of steady-state and transient flow in soils with and without macropores. Soil Sci. Soc. Am. J., 64, 1305-1317.

Vanderborght, J., Gahwiller, P., Wydler, H., Schultze., U., Fluher, H., 2002. Imaging fluorescent dye concentration on soil surfaces: uncertainty of concentration estimates. Soil Sci. Soc. Am. J., 66, 760-773.

Van Genuchten, M.Th., Davidson, J.M., Wierenga, P.J., 1974. An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media. Soil Sci. Soc. Am. Proc., 38, 29-35.

Weiler, M., Flühler, H., 2004. Inferring flow types from dye pattern in macroporous soils. Geoderma, 120, 137-153.

Wilson, G.V., Nieber, J.L., Sidle, R.C., Fox, G.A., 2012. Internal erosion during pipeflow: state of science for experimental and numerical analysis. Trans. Am. Soc. Agric. Biol. Engr., 55(5), (in press).

Wood, E.F., Sivapalan, N., Beven, K., 1990. Similarity and scale in catchment storm response. Rev. Geophys., 28(1), 1-18.

Zanker, V., Peter, W., 1958. Die prototropen Formen des Fluoreszeins. Chem. Ber., 91, 572-580.

Zheng, C., Bianchi, M., Gorelick, S.M., 2011. Lessons learned from 25 years of research at the MADE site. Ground Water, 49(5), 649-662.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 4
PDF Downloads 40 40 5