Numerical Simulation of Fly-Ash Transport in Three Sands of Different Particle-Size Distributions Using Hydrus-1d

Open access

Numerical Simulation of Fly-Ash Transport in Three Sands of Different Particle-Size Distributions Using Hydrus-1d

Study is focused on the numerical modeling of fly-ash transport in three sands, which was experimentally studied in the laboratory. Sands were packed in glass cylinders with diameter of 5.52 cm and height of 18 cm. Sands were also packed in plastic cylinders with diameter of 30 cm and height of 40 cm. The fly-ash and pulse infiltrations were applied on the top of all cylinders. Visually observed and gravimetrically evaluated fly-ash migration in small cylinders corresponded to fly-ash mobility in large columns detected using the SM400 Kappameter. The HYDRUS-1D code was used to simulate observed fly-ash transport. Parameters of soil hydraulic functions were either obtained using the Tempe cells and the RETC program or estimated using numerical inversion of transient water flow data measured in both types of columns using HYDRUS-1D. Parameters characterizing colloid transport in sands were then estimated from the final fly-ash distribution in sandy columns using attachment/detachment concept in HYDRUS-1D. Fly-ash mobility increased with increasing sand particle sizes, e.g. pore sizes. Particle sizes and pore water velocity influenced the attachment coefficient, which was calculated assuming filtration theory. The same longitudinal dispersivity, sticking efficiency and detachment coefficient sufficiently characterized fly-ash behavior in all sands.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AUSET M. KELLER A. A. 2004: Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resour. Res. 40 W03503 doi: 10.1029/2003WR002800.

  • BOLSTER C. H. MILLS A. L. HORNBERGER G. M. HERMAN J. S. 1999: Spatial distribution of bacteria experiments in intact cores. Water Resour. Res. 35 1797-1807.

  • BOYKO T. SCHOLGER R. STANEK H. 2004. Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements. J. Appl. Geophys. 55 3-4 249-259.

  • BRADFORD S. A. BETTAHAR M. SIMUNEK J. VAN GENUCHTEN M. T. 2004: Straing and attachment of colloids in physically heterogeneous porous media. Vadose Zone J. 3 384-394.

  • BRADFORD S. A. SIMUNEK J. BETTAHAR M. TADASSA Y. F. VAN GENUCHTEN M. T. YATES S. R. 2005: Straing of colloids at textural interfaces. Water Resour. Res. 41 10 W10404.

  • BRADFORD S. A. SIMUNEK J.BETTAHAR M. VAN GENUCHTEN M. T. YATES S. R. 2003: Modelling colloid attachment straining and exclusion in saturated porous media. Environ. Sci. Technik. 37 2242-2250.

  • BRADFORD S. A. YATES S. R. BETTAHAR M. SIMUNEK J. 2002: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38 1327 doi: 10.1029/2002WR001340.

  • DELTA-T DEVICES LTD. 2005: User Manual for the Moisture Meter type HH2 Cambridge.

  • ELIMELECH M. NAHI M. KO C.-H. RYAN J. N. 2000: Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci. Technol. 34 2143-2148.

  • FLANDERS P. J. 1994: Collection measurements and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys. 75 5931-5936.

  • FOPPEN J. W. LUTTERODT G. ROLING F. M. UHLENBROOL S. 2010: Towards understanding inter-strain attachment variations of Escherichia coli during transport in saturated quartz sand. Water Res. 44 1202-1212.

  • GAO H. QIU C. Q. FAN D. M. JIM Y. WANG L. P. 2010: Three-dimensional microscale flow simulations and colloid transport modeling in saturated soil porous media. Computer and Mathematics with Applications 59 7 2271-2289.

  • GARGIULO G. BRADFORD S. ŠIMŮNEK J. USTOHAL P. VEREEKER H. KLUMPP E. 2007: Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the bacteria surface proteins. J. Contam. Hydrol. 92 255-273.

  • GARGIULO G. BRADFORD S. ŠIMŮNEK J. USTOHAL P. VEREEKER H. KLUMPP E. 2008: Bacteria transport and deposition under unsaturated conditions: The role of water content and bacteria surface hydrophobicity. Vadose Zone J. 7 2 406-419.

  • HAY K. L. DEARING J. A. BABAN S. M. J. LOVELAND P. J. 1997: A preliminary attempt to identify atmospherically-derived pollution particles in English topsoils from magnetic susceptibility measurements. Phys. Chem. Earth 22 207-210.

  • HELLER F. STRZYSZCZ Z. MAGIERA T. 1998: Magnetic record of industrial pollution in forest soils of Upper Silesia Poland. J. Geophys. Res. 103 17767-17774.

  • HANESCH M. SCHOLGER R. 2002: Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geology 42 8 857-870.

  • HANESCH M. SCHOLGER R. REY D. 2003: Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atm. Environment 37 5125-5133.

  • JIANG S. PANG L. BUCHAN G. D. ŠIMŮNEK J. NOONAN M. J. CLOSE M. E. 2010: Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D. Water Res. 44 1050-1061.

  • JOHNSOR P. R. 1999: A comparison of streaming and microelectrophoresis methods for obtaining the ζ potential of granular porous media surfaces. J. of Colloid and Interface Science 209 264-267.

  • KAPIČKA A. JORDANOVA N. PETROVSKÝ E. USTJAK S. 2001: Effect of different soil conditions on magnetic parameters of power-plant fly ashes J. Appl. Geophys. 48 93-102.

  • KAPIČKA A. KODEŠOVÁ R. PETROVSKÝ E. HŮLKA Z. GRISON H. KAŠKA M. 2011: Experimental study of fly-ash migration by using a magnetic method. Studia Geoph. Geod. 55 in print.

  • KAPIČKA A. PETROVSKÝ E. FIALOVÁ H. PODRÁZSKÝ V. DVOŘÁK I. 2008: High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Studia Geoph. Geod. 52 271-284.

  • KAPIČKA A. PETROVSKÝ E. USTJAK S. and MACHÁČKOVÁ K. 1999: Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic J. Geoch. Explor. 66 291-297.

  • KELLER A. A. SIRIVITHAYAPAKORN S. CHRYSIKOPOULOS V. 2004: Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column Wat. Resour. Res. 40 W08304 doi:10.1029/2003WR002676.

  • KIM S. B. 2006: Numerical analysis of bacteria transport in saturated porous media. Hydrol. Proc. 20 5 1177-1186.

  • MAGIERA T. STRZYSZCZ Z. 2000: Ferrimagnetic minerals of anthropogenic origin in soils of some polish national parks. Water Air and Soil Pollution 124 37-48.

  • PETROVSKÝ E. ELLWOOD B. B. 1999. Magnetic monitoring of air-land and water-pollution. In: Quaternary Climates Environments and Magnetism (B. A. Maher R. Thompson Eds.) Cambridge Univ. Press.

  • PETROVSKÝ E. HŮLKA Z. KAPIČKA A. MAGPROX TEAM 2004: New tool for in-situ measurements of vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Technol. 25 1021-1029.

  • POTGIETER-VERMAAK S. S. POTGIETER J. H. KRUGER R. A. SPOLNIK Z. VAN GRIEKEN R. 2005: A characterization of the surface properties of an ultra fine fly ash (UF-FA) used in the polymer industry. Fuel 84 2295-2300.

  • SAPRYKINA M. N. YAROSHEVSKAYA N. V. SAVCHINA L. A. GONCHARUK V. V. 2010: Adhesion analysis of micromycetes on granular media. J. Water Chem. Technol. 32 284-289.

  • SHANI C. WEISBROD N. YAKIREVICH A. 2008: Colloid transport through saturated sand columns: Influence of physical and chemical surface properties on deposition. Colloids and Surfaces A: Physicochem. Eng. Aspects 316 142-150.

  • SHARMA A. P. TRIPATHI B. D. 2008: Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Environmental Monitoring and Assessment 138 31-39.

  • SCHINNER T. LETZNER A. LIEDTKE S. CASTRO F. D. EYDELNANT I. A. TUFENKJI N. 2010: Transport of selected bacteria pathogens in agricultural soil and quartz sand. Water Res. 44 1182-1192.

  • SIM Y. CHRYSIKOPOULOS V. 2000: Virus transport in unsaturated porous media. Wat. Resour. Res. 36 173-179.

  • SIRIVITHAYAPAKORN S. KELLER A. A. 2003: Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface Wat. Resour. Res. 39 12 1346 doi: 10.1029/2003WR002487.

  • ŠIMŮNEK J. ŠEJNA M. SAITO H. SAKAI M. VAN GENUCHTEN M. TH. 2008a: The HYDRUS-1D Software Package for Simulating the Movement of Water Heat and Multiple Solutes in Variably Saturated Media Version 4.0 HYDRUS Software Series 3 Department of Environmental Sciences University of California Riverside Riverside California USA pp. 315.

  • ŠIMŮNEK J. VAN GENUCHTEN M. TH. 2008b: Modeling nonequilibrium flow and transport with HYDRUS Vadose Zone J. 7 2 782-797.

  • SPITERI C. KALINSKI V. ROSLER W. HOFFMANN V. APPEL E. MAGPROX TEAM 2005: Magnetic screening of a pollution hotspot in the Lausitz area Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environmental Geology 49 1-9.

  • TORKZABAN S. TAZEHKAND S. S. WALKER S. L. BRADFORD S. A. 2008: Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry. Wat. Resour. Res. 44 4 W04403.

  • UMS GMBH MUNICH 2005: T5 Miniature Pressure Transducer Tensiometer User Manual version 1.8 Munich.

  • VAN GENUCHTEN M. TH. 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 892-898.

  • VAN GENUCHTEN M. TH. ŠIMŮNEK J. LEIJ F. J. ŠEJNA M. 2005: RETC Version 6.02 Code for Quantifying the Hydraulic Functions of Unsaturated Soils

  • WOSSNER W. W. BALL P. N. DEBORDE D. C. TROY T. L. 2001: Viral transport in a sand and gravel aquifer under field pumping conditions. Ground Water 39 886-894.

  • ZHANG W. BROWN G. O. STORM D. E. ZHANG H. 2008: Fly-ash-amended sand as filter media in bioretention cells to improve phosphorus removal. Wat. Environ. Res. 80 6 507-516.

Journal information
Impact Factor

IMPACT FACTOR 2018: 2.023
5-year IMPACT FACTOR: 2.048

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 99 1
PDF Downloads 89 45 1