Numerical Simulation of Fly-Ash Transport in Three Sands of Different Particle-Size Distributions Using Hydrus-1d

Open access

Numerical Simulation of Fly-Ash Transport in Three Sands of Different Particle-Size Distributions Using Hydrus-1d

Study is focused on the numerical modeling of fly-ash transport in three sands, which was experimentally studied in the laboratory. Sands were packed in glass cylinders with diameter of 5.52 cm and height of 18 cm. Sands were also packed in plastic cylinders with diameter of 30 cm and height of 40 cm. The fly-ash and pulse infiltrations were applied on the top of all cylinders. Visually observed and gravimetrically evaluated fly-ash migration in small cylinders corresponded to fly-ash mobility in large columns detected using the SM400 Kappameter. The HYDRUS-1D code was used to simulate observed fly-ash transport. Parameters of soil hydraulic functions were either obtained using the Tempe cells and the RETC program or estimated using numerical inversion of transient water flow data measured in both types of columns using HYDRUS-1D. Parameters characterizing colloid transport in sands were then estimated from the final fly-ash distribution in sandy columns using attachment/detachment concept in HYDRUS-1D. Fly-ash mobility increased with increasing sand particle sizes, e.g. pore sizes. Particle sizes and pore water velocity influenced the attachment coefficient, which was calculated assuming filtration theory. The same longitudinal dispersivity, sticking efficiency and detachment coefficient sufficiently characterized fly-ash behavior in all sands.

AUSET M., KELLER A. A., 2004: Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resour. Res., 40, W03503, doi: 10.1029/2003WR002800.

BOLSTER C. H., MILLS A. L., HORNBERGER G. M., HERMAN J. S., 1999: Spatial distribution of bacteria experiments in intact cores. Water Resour. Res., 35, 1797-1807.

BOYKO T., SCHOLGER R., STANEK H., 2004. Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements. J. Appl. Geophys., 55, 3-4, 249-259.

BRADFORD S. A., BETTAHAR M., SIMUNEK J., VAN GENUCHTEN M. T., 2004: Straing and attachment of colloids in physically heterogeneous porous media. Vadose Zone J., 3, 384-394.

BRADFORD S. A., SIMUNEK J., BETTAHAR M., TADASSA Y. F., VAN GENUCHTEN M. T., YATES S. R., 2005: Straing of colloids at textural interfaces. Water Resour. Res., 41, 10, W10404.

BRADFORD S. A., SIMUNEK J.,BETTAHAR M., VAN GENUCHTEN M. T., YATES S. R., 2003: Modelling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technik., 37, 2242-2250.

BRADFORD S. A., YATES S. R. BETTAHAR M., SIMUNEK J., 2002: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res., 38, 1327, doi: 10.1029/2002WR001340.

DELTA-T DEVICES LTD., 2005: User Manual for the Moisture Meter, type HH2, Cambridge.

ELIMELECH M., NAHI M., KO C.-H., RYAN J. N., 2000: Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci. Technol., 34, 2143-2148.

FLANDERS P. J., 1994: Collection, measurements and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931-5936.

FOPPEN J. W., LUTTERODT G., ROLING F. M., UHLENBROOL S., 2010: Towards understanding inter-strain attachment variations of Escherichia coli during transport in saturated quartz sand. Water Res., 44, 1202-1212.

GAO H., QIU C. Q., FAN D. M., JIM Y., WANG L. P., 2010: Three-dimensional microscale flow simulations and colloid transport modeling in saturated soil porous media. Computer and Mathematics with Applications, 59, 7, 2271-2289.

GARGIULO G., BRADFORD S., ŠIMŮNEK J., USTOHAL P., VEREEKER H., KLUMPP E., 2007: Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the bacteria surface proteins. J. Contam. Hydrol., 92, 255-273.

GARGIULO G., BRADFORD S., ŠIMŮNEK J., USTOHAL P., VEREEKER H., KLUMPP E., 2008: Bacteria transport and deposition under unsaturated conditions: The role of water content and bacteria surface hydrophobicity. Vadose Zone J., 7, 2, 406-419.

HAY K. L., DEARING J. A., BABAN S. M. J., LOVELAND P. J., 1997: A preliminary attempt to identify atmospherically-derived pollution particles in English topsoils from magnetic susceptibility measurements. Phys. Chem. Earth, 22, 207-210.

HELLER F., STRZYSZCZ Z., MAGIERA T., 1998: Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. J. Geophys. Res., 103, 17767-17774.

HANESCH M., SCHOLGER R., 2002: Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geology, 42, 8, 857-870.

HANESCH M., SCHOLGER R., REY D., 2003: Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atm. Environment, 37, 5125-5133.

JIANG S., PANG L., BUCHAN G. D., ŠIMŮNEK J., NOONAN M. J., CLOSE M. E., 2010: Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D. Water Res., 44, 1050-1061.

JOHNSOR P. R. 1999: A comparison of streaming and microelectrophoresis methods for obtaining the ζ potential of granular porous media surfaces. J. of Colloid and Interface Science, 209, 264-267.

KAPIČKA A., JORDANOVA N., PETROVSKÝ E., USTJAK S., 2001: Effect of different soil conditions on magnetic parameters of power-plant fly ashes J. Appl. Geophys., 48, 93-102.

KAPIČKA A., KODEŠOVÁ R., PETROVSKÝ E., HŮLKA Z., GRISON H., KAŠKA M., 2011: Experimental study of fly-ash migration by using a magnetic method. Studia Geoph. Geod., 55, in print.

KAPIČKA A., PETROVSKÝ E., FIALOVÁ H., PODRÁZSKÝ V., DVOŘÁK I., 2008: High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Studia Geoph. Geod., 52, 271-284.

KAPIČKA A., PETROVSKÝ E., USTJAK S. and MACHÁČKOVÁ, K., 1999: Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic, J. Geoch. Explor., 66, 291-297.

KELLER A. A., SIRIVITHAYAPAKORN S., CHRYSIKOPOULOS V., 2004: Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column, Wat. Resour. Res., 40, W08304, doi:10.1029/2003WR002676.

KIM S. B., 2006: Numerical analysis of bacteria transport in saturated porous media. Hydrol. Proc., 20, 5, 1177-1186.

MAGIERA T., STRZYSZCZ Z., 2000: Ferrimagnetic minerals of anthropogenic origin in soils of some polish national parks. Water, Air and Soil Pollution, 124, 37-48.

PETROVSKÝ E., ELLWOOD B. B., 1999. Magnetic monitoring of air-land and water-pollution. In: Quaternary Climates, Environments and Magnetism (B. A. Maher, R. Thompson, Eds.), Cambridge Univ. Press.

PETROVSKÝ E., HŮLKA Z., KAPIČKA A., MAGPROX TEAM, 2004: New tool for in-situ measurements of vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Technol., 25, 1021-1029.

POTGIETER-VERMAAK S. S., POTGIETER J. H., KRUGER R. A., SPOLNIK Z., VAN GRIEKEN R., 2005: A characterization of the surface properties of an ultra fine fly ash (UF-FA) used in the polymer industry. Fuel, 84, 2295-2300.

SAPRYKINA M. N., YAROSHEVSKAYA N. V., SAVCHINA L. A., GONCHARUK V. V., 2010: Adhesion analysis of micromycetes on granular media. J. Water Chem. Technol., 32, 284-289.

SHANI C., WEISBROD N., YAKIREVICH A., 2008: Colloid transport through saturated sand columns: Influence of physical and chemical surface properties on deposition. Colloids and Surfaces A: Physicochem. Eng. Aspects, 316, 142-150.

SHARMA A. P., TRIPATHI B. D., 2008: Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Environmental Monitoring and Assessment, 138, 31-39.

SCHINNER T., LETZNER A., LIEDTKE S., CASTRO F. D., EYDELNANT I. A., TUFENKJI N., 2010: Transport of selected bacteria pathogens in agricultural soil and quartz sand. Water Res., 44, 1182-1192.

SIM Y., CHRYSIKOPOULOS V., 2000: Virus transport in unsaturated porous media. Wat. Resour. Res., 36, 173-179.

SIRIVITHAYAPAKORN S., KELLER A. A., 2003: Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface, Wat. Resour. Res., 39, 12, 1346, doi: 10.1029/2003WR002487.

ŠIMŮNEK J., ŠEJNA M., SAITO H., SAKAI M., VAN GENUCHTEN M. TH., 2008a: The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0, HYDRUS Software Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, pp. 315.

ŠIMŮNEK J., VAN GENUCHTEN M. TH., 2008b: Modeling nonequilibrium flow and transport with HYDRUS, Vadose Zone J., 7, 2, 782-797.

SPITERI C., KALINSKI V., ROSLER W., HOFFMANN V., APPEL E., MAGPROX TEAM, 2005: Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environmental Geology, 49, 1-9.

TORKZABAN S., TAZEHKAND S. S., WALKER S. L., BRADFORD S. A. 2008: Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry. Wat. Resour. Res., 44, 4, W04403.

UMS GMBH, MUNICH, 2005: T5 Miniature Pressure Transducer Tensiometer, User Manual version 1.8, Munich.

VAN GENUCHTEN M. TH., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898.

VAN GENUCHTEN M. TH., ŠIMŮNEK J., LEIJ F. J., ŠEJNA M., 2005: RETC, Version 6.02, Code for Quantifying the Hydraulic Functions of Unsaturated Soils

WOSSNER W. W., BALL P. N., DEBORDE D. C., TROY T. L., 2001: Viral transport in a sand and gravel aquifer under field pumping conditions. Ground Water, 39, 886-894.

ZHANG W., BROWN G. O., STORM D. E., ZHANG H., 2008: Fly-ash-amended sand as filter media in bioretention cells to improve phosphorus removal. Wat. Environ. Res., 80, 6, 507-516.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information

IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639

CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 21
PDF Downloads 14 14 5