A calibration-free evapotranspiration mapping technique for spatially-distributed regional-scale hydrologic modeling

Open access

A calibration-free evapotranspiration mapping technique for spatially-distributed regional-scale hydrologic modeling

Monthly evapotranspiration (ET) rates over Hungary for 2000-2008 are mapped at a spatial scale of about 1 km with the help of MODIS daytime land surface temperature as well as sunshine duration, air temperature and humidity data. Mapping is achieved by a linear transformation of MODIS daytime land surface temperature values employing the complementary relationship of evaporation. Validation of the ET rates has been performed at spatial scales spanning almost three magnitudes from a few hundred meters to about a hundred kilometers employing eddy-covariance (EC) measurements and catchment water balance closures. Typically the unbiased ET estimates are within 15% of EC values at a monthly basis, within 7% at an annual, and within only a few percent at a multi-year basis. The ET estimates yield an especially remarkable match (relative error of 0.2%, R2 = 0.95) with high-tower EC measurements at a monthly basis. The spatial distribution of the ET estimates confirm earlier, complex regional hydrologic model results and observations as well as yields a perfect estimate of the country's precipitation recycling index (the ratio of the multi-year mean ET and precipitation rates spatially aggregated for the whole country) of 89.2% vs an observed value of 89.6%. The CREMAP method is very simple, easy to implement, requires minimal data, calibration-free, and works accurately when conditions for the complementary relationship are met.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ALLEN R.G. TASUMI M. TREZZA R. 2007: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. J. Irrig. Drainage Engng. 133 4 380-394.

  • BALDOCCHI D.D. 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past present and future. Global Change Biol. 9 1-14.

  • BARCZA Z. KERN A. HASZPRA L. KLJUN N. 2009: Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. Agric. Forest Meteor. 149 795-807.

  • BASTIAANSSEN W.G.M. MENENTI M. FEDDES R.A. HOLTSLAG A.A.M. 1998: A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 212 198-212.

  • BOUCHET R.J. 1963: Evapotranspiration reelle evapotranspiration potentielle et production agricole. Annal. Agronom. 14 543-824.

  • BRUTSAERT W. PARLANGE M.B. 1998: Hydrologic cycle explains the evaporation paradox. Nature 396 (6706) 30.

  • BRUTSAERT W. STRICKER H. 1979: An Advection-Aridity approach to estimate actual regional evapotranspiration. Water Resour. Res. 15 443-449.

  • GUSEV Y. NOVÁK V. 2007: Soil water - main water resources for terrestrial ecosystems of the biosphere. J. Hydrol. Hydromech. 55 1 3-15.

  • HLAVČOVÁ K. KALAŠ M. KOHNOVÁ S. SZOLGAY J. 2004.: Modelling potential evapotranspiration and runoff in monthly time step in the Hron River basin. (In Slovak.) (Modelovanie potenciálnej evapotranspirácie a odtoku v mesačnom kroku na povodí Hrona.) J. Hydrol. Hydromech. 52 4 255-266.

  • HOBBINS M.T. RAMIREZ J.A. BROWN T.C. 2001a): The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour. Res. 37 5 1389-1403.

  • HOBBINS M.T. RAMIREZ J.A. BROWN T.C. CLAESSENS L.H.J.M. 2001b): The complementary relationship in estimation of regional evapotranspiration: The complementary relationship areal evaporation and advection-aridity models. Water Resour. Res. 37 5 1367-1387.

  • KOVACS A. SZILAGYI J. 2009a): Estimating evaporation rates of shallow great lakes in Hungary I. (In Hungarian.) Hidrol. Kozlony 89 2 47-50.

  • KOVACS A. SZILAGYI J. 2009b): Estimating evaporation rates of shallow great lakes in Hungary II. (In Hungarian.) Hidrol. Kozlony 89 2 51-56.

  • MAJOR P. 1976: Groundwater balance investigations in flat lands. 2. Piezometer readings. (VITUKI report in Hungarian) VITUKI Budapest.

  • MORTON F.I. 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol. 66 1 1-76.

  • MORTON F.I. RICARD F. FOGARASI S. 1985: Operational estimates of areal evapotranspiration and lake evaporation - Program WREVAP. National Hydrological Research Institute Paper #24 Ottawa Ontario Canada.

  • NAGY Z. PINTER K. CZOBEL S. BALOGH J. HORVATH L. FOTI S. BARCZA Z. WEIDINGER T. CSINTALAN Z. DINH N.Q. GROSZ B. TUBA Z. 2007: The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agric. Ecosyst. Environ. 121 1-2 21-29.

  • NOVÁK V. 2001: Evapotranspiration from Crop Canopies and its Distribution over the Territory of Slovakia. Pollution and Water Resources Columbia University Seminar Proceedings Columbia University 375-397.

  • NOVÁK V. MATEJKA F. 2000: Vzťah medzi vlhkosťou vlhkostným potenciálom pôdy a intenzitou evapotranspirácie: výsledky matematickeho modelovania. (In Slovak.) (Soil water content soil water potential and evapotranspiration interrelations: results of mathematical modeling.) J. Hydrol. Hydromech. 48 2 125-141.

  • PARAJKA J. SZOLGAY J. MÉSZÁROS I. KOSTKA Z. 2004: Grid-based mapping of the long-term mean annual potential and actual evapotranspiration in upper Hron River basin. J. Hydrol. Hydromech. 52 4 239-254.

  • PENMAN H.L. 1948: Natural evaporation from open water bare soil and grass. Proc. Royal Soc. London A193 120-146.

  • PINTER K. BARCZA Z. BALOGH J. CZOBEL S. CSINTALAN Z. TUBA Z. NAGY Z. 2008: Interannual variability of grasslands' carbon balance depends on soil type. Community Ecol. 9 (Suppl1) 43-48. doi: 10.1556/ComEc.9.2008.S.7.

  • PRIESTLEY C.H.B. TAYLOR R.J. 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Month. Weather Rev. 100 81-92.

  • STELCZER K. 2000: A vizkeszletgazdalkodas hidrologiai alapjai. (Hydological bases of water resources management. (In Hungarian.) ELTE Eotvos Kiado Budapest Hungary.

  • SZILAGYI J. 1994: Water-balance modeling in a changing environment: reductions in unconfined aquifer levels in the area between the Danube and Tisza Rivers in Hungary. Master's Thesis University of New Hampshire Durham New Hampshire USA.

  • SZILAGYI J. 2001: Modeled areal evaporation trends over the conterminous United States. J. Irrig. Drainage Engng. 127 4 196-200.

  • SZILAGYI J. VOROSMARTY C.J. 1997: Water-balance modeling in a changing environment: reductions in unconfined aquifer levels in the area between the Danube and Tisza Rivers in Hungary. J. Hydrol. Hydromech. 45 348-364.

  • SZILAGYI J. JOZSA J. 2008: New findings about the complementary relationship based evaporation estimation methods. J. Hydrol. 354 171-186.

  • SZILAGYI J. HOBBINS M. JOZSA J. 2009: A modified Advection-Aridity model of evapotranspiration. J. Hydrol. Engng. 14 6 569-574.

  • SZILAGYI J. JOZSA J. 2009a): Analytical solution of the coupled 2-D turbulent heat and vapor transport equations and the complementary relationship of evaporation. J. Hydrol. 372 61-67.

  • SZILAGYI J. JOZSA J. 2009b: Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data. Hydrol. Earth System Sci. 13 5 629-637.

  • SZILAGYI J. JOZSA J. 2009c): An evaporation estimation method based on the coupled 2-D turbulent heat and vapor transport equations. J. Geophys. Res. 114 D06101 doi:10.1029/2008JD010772.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 2.023
5-year IMPACT FACTOR: 2.048

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 152 2
PDF Downloads 100 80 0