Forecasting US Tourists’ inflow to Slovenia by modified Holt-Winters Damped model: A case in the Tourism industry logistics and supply chains

Open access

Abstract

Forecasting is important in many branches of logistics, including the logistics related to Tourism supply chains. With an increasing inflow of American tourists, planning and forecasting the US tourists’ inflow to Slovenia have gained far more importance attention amongst scholars and practitioners. This study, therefore, was conducted to forecast the American tourists’ inflow to Slovenia using one of the predictive models based on the exponential smoothing approach, namely Holt-Winters damped additive (HWDA) exponential smoothing method. The model was modified by several improvements, while the obtained results were generalized to other supply chain components. The results show that the forecasting system can predict well the observed inflow, while the methodology used to derive the model might have enriched the plethora of existing practical forecasting approaches in the tourism domain. Benchmarking demonstrates that the proposed model outperforms a competitive ARIMA model and official forecasts. The practical implications are also discussed in this paper.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] www.slovenia.info. (2016). I Feel Slovenia

  • [2] N. Kovačić D. Topolšek and D. Dragan “Tourism sector Travel agencies and Transport Suppliers: Comparison of Different Estimators in the Structural Equation Modeling” Logistics & Sustainable Transport vol. 6 no. 1 pp. 11-24 2015.

  • [3] R. Hyndman A. B. Koehler J. K. Ord and R. D. Snyder Forecasting with exponential smoothing: the state space approach. New York: Springer Science & Business Media 2008.

  • [4] A. Gosar “Some Characteristics of Tourism in Slovenia” Slovene Studies Journal vol. 12 no. 1 pp. 33-42 1990.

  • [5] M. Konecnik and F. Go “Tourism destination brand identity: The case of Slovenia” Journal of Brand Management vol. 15 no. 3 pp. 177-189 2008.

  • [6] A. Assaf and K. L. Cvelbar “Privatization market competition international attractiveness management tenure and hotel performance: Evidence from Slovenia” International Journal of Hospitality Management vol. 30 no. 2 pp. 391-397 2011.

  • [7] T. Mihalič V. Žabkar and L. K. Cvelbar “A hotel sustainability business model: evidence from Slovenia” Journal of Sustainable Tourism vol. 20 no. 5 pp. 701-719 2012.

  • [8] V. Žabkar M. M. Brenčič and T. Dmitrović “Modelling perceived quality visitor satisfaction and behavioural intentions at the destination level” Tourism management vol. 31 no. 4 pp. 537-546 2010.

  • [9] SSD “Slovene: Statistični Urad Republike Slovenije” Statistični Urad Republike Slovenije https://www.stat.si/statweb2016.

  • [10] J. W. Taylor “Exponential smoothing with a damped multiplicative trend” International journal of Forecasting vol. 19 no. 4 pp. 715-725 2003.

  • [11] R. C. Souza M. Barros and C. V. C. d. Miranda “Short Term Load Forecasting Using Double Seasonal Exponential Smoothing and Interventions to Account for Holidays and Temperature Effects” presented at the TLAIO II-2 do Taller Latino Iberoamericano de Investigación de Operaciones Acapulco México. 2007.

  • [12] J. Taylor “Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing” Journal of Operational Research Society vol. 54 pp. 799-805 2003.

  • [13] J. Taylor L. Menezes and P. McSharry “A Comparison of Univariate Methods for Forecasting Eletricity Demand up to a Day Ahead” International Journal of Forecasting vol. 22 no. 1 pp. 1-16 2006.

  • [14] M. Intihar T. Kramberger and D. Dragan “The relationship between the economic indicators and the accuracy of container throughput forecasting” in IAME 2015 Conference Kuala Lumpur Malaysia Kuala Lumpur 2015.

  • [15] M. Intihar T. Kramberger and D. Dragan “Container Throughput Forecasting Using Dynamic Factor Analysis and ARIMAX Model” Promet-Traffic Transportation vol. 29 no. 5 pp. 529-542 2017.

  • [16] D. Dragan T. Kramberger A. Lisec and M. Intihar “The Impact of Macroeconomic Indicators on Forecasting a Total Cargo Throughput in the Adriatic Seaport” in Symposium on Logistics (ISL 2017) Data Driven Supply Chains 2017.

  • [17] D. N. Aratuo and X. L. Etienne “Industry level analysis of tourism-economic growth in the United States” Tourism Management vol. 70 pp. 333-340 2019.

  • [18] WEF The travel and tourism competitiveness report 2015. World Economic Forum 2015.

  • [19] J. Balaguer and Cantavella-Jorda “Tourism as a long-run economic growth factor: the Spanish case” Applied economics vol. 34 no. 7 pp. 877-884 2002.

  • [20] A. Lanza P. Temple and G. Urga “The implications of tourism specialisation in the long run: an econometric analysis for 13 OECD economies” Tourism Management vol. 24 no. 3 pp. 315-321 2003.

  • [21] J. G. Brida B. Lanzilotta S. Lionetti and W. A. Risso “Research note: The tourism-led growth hypothesis for Uruguay” Journal of Policy Research in Tourism Leisure vol. 16 no. 3 pp. 765-771 2010.

  • [22] N. Dritsakis “Tourism development and economic growth in seven Mediterranean countries: A panel data approach” Tourism Economics vol. 18 no. 4 pp. 801-816 2012.

  • [23] M. d. P. Pablo-Romero and J. A. Molina “Tourism and economic growth: A review of empirical literature” Tourism Management Perspectives vol. 8 pp. 28-41 2013.

  • [24] L. Gunduz and A. Hatemi-J “Is the tourism-led growth hypothesis valid for Turkey?” Applied Economics Letters vol. 12 no. 8 pp. 499-504 2005.

  • [25] M. Belloumi “The relationship between tourism receipts real effective exchange rate and economic growth in Tunisia” International journal of tourism research vol. 12 no. 5 pp. 550-560 2010.

  • [26] S. Proença and E. Soukiazis “Tourism as an economic growth factor: a case study for Southern European countries” Tourism Economics vol. 14 no. 4 pp. 791-806 2008.

  • [27] S. Katircioğlu “Research note: Testing the tourism-led growth hypothesis for Singapore–an empirical investigation from bounds test to cointegration and Granger causality tests” Tourism Economics vol. 16 no. 4 pp. 1095-1101 2010.

  • [28] J. G. Brida W. A. Risso and Events “Tourism as a determinant of long-run economic growth” Journal of Policy Research in Tourism Leisure vol. 2 no. 1 pp. 14-28 2010.

  • [29] D. Dragan A. Keshavarzsaleh B. Jereb and D. Topolšek “Integration with transport suppliers and efficiency of travel agencies” International Journal of Value Chain Management vol. 9 no. 2 pp. 122-148 2018.

  • [30] M.-H. Chen “Interactions between business conditions and financial performance of tourism firms: Evidence from China and Taiwan” Tourism Management vol. 28 no. 1 pp. 188-203 2007.

  • [31] R. C. Mill and A. M. Morrison The tourism system. Dubuque: Kendall Hunt 2002.

  • [32] C.-H. H. Tang and S. S. Jang “The tourism–economy causality in the United States: A sub-industry level examination” Tourism Management vol. 30 no. 4 pp. 553-558 2009.

  • [33] A. K. Adebayo and A. C. Iweka “Optimizing the sustainability of tourism infrastructure in Nigeria through design for deconstruction framework” American Journal of Tourism Management vol. 3 no. 1A pp. 13-19 2014.

  • [34] B. Zheng and Y. Zhang “Household expenditures for leisure tourism in the USA 1996 and 2006” International Journal of Tourism Research vol. 15 no. 2 pp. 197-208 2013.

  • [35] J. Khadaroo and B. Seetanah “Transport infrastructure and tourism development” Annals of tourism research vol. 34 no. 4 pp. 1021-1032 2007.

  • [36] K. M. Cheng “Tourism demand in Hong Kong: Income prices and visa restrictions” Current Issues in Tourism vol. 15 no. 3 pp. 167-181 2012.

  • [37] J. N. Goodrich “September 11 2001 Attack on America: Impact on Tourism Security” Journal of Travel Tourism Marketing vol. 11 no. 4 pp. 1-12 2002.

  • [38] I. Chatziantoniou S. Degiannakis B. Eeckels and G. Filis “Forecasting tourist arrivals using origin country macroeconomics” Applied Economics vol. 48 no. 27 pp. 2571-2585 2016.

  • [39] C. L. Morley “A microeconomic theory of international tourism demand” Annals of Tourism Research vol. 19 no. 2 pp. 250-267 1992.

  • [40] F. Chan and C. Lim “Spectral analysis of seasonality in tourism demand” Mathematics Computers in Simulation vol. 81 no. 7 pp. 1409-1418 2011.

  • [41] D. Gounopoulos D. Petmezas and D. Santamaria “Forecasting tourist arrivals in Greece and the impact of macroeconomic shocks from the countries of tourists’ origin” Annals of Tourism Research vol. 39 no. 2 pp. 641-666 2012.

  • [42] V. J. T. m. Cho “A comparison of three different approaches to tourist arrival forecasting” vol. 24 no. 3 pp. 323-330 2003.

  • [43] F.-L. Chu “A fractionally integrated autoregressive moving average approach to forecasting tourism demand” Tourism Management vol. 29 no. 1 pp. 79-88 2008.

  • [44] F.-L. Chu “A piecewise linear approach to modeling and forecasting demand for Macau tourism” Tourism Management vol. 32 no. 6 pp. 1414-1420 2011.

  • [45] H. Song G. Li S. F. Witt and G. Athanasopoulos “Forecasting tourist arrivals using time-varying parameter structural time series models” International Journal of Forecasting vol. 27 no. 3 pp. 855-869 2011.

  • [46] H. Hassani A. Webster E. S. Silva and S. Heravi “Forecasting US tourist arrivals using optimal singular spectrum analysis” Tourism Management vol. 46 pp. 322-335 2015.

  • [47] B. Peng H. Song and G. Crouch “A meta-analysis of international tourism demand forecasting and implications for practice” Tourism Management vol. 45 pp. 181-193 2014.

  • [48] S. F. Witt H. Song and G. Li The advanced econometrics of tourism demand. Abingdon: Routledge 2008.

  • [49] M. Akal “Forecasting Turkey’s tourism revenues by ARMAX model” Tourism Management vol. 25 no. 5 pp. 565-580 2004.

  • [50] C. Lim M. McAleer and J. C. Min “ARMAX modelling of international tourism demand” Mathematics Computers in Simulation vol. 79 no. 9 pp. 2879-2888 2009.

  • [51] H. Grubb and A. Mason “Long lead-time forecasting of UK air passengers by Holt–Winters methods with damped trend” International Journal of Forecasting vol. 17 no. 1 pp. 71-82 2001.

  • [52] G. Athanasopoulos and A. de Silva “Multivariate exponential smoothing for forecasting tourist arrivals” Journal of Travel Research vol. 51 no. 5 pp. 640-652 2012.

  • [53] P. Dimitrov M. Kalinova G. Gantchev and C. Nikolov “Exponential forecasting of the monthly volume of the tourism receipts in Bulgaria” Tourism Management Studies vol. 11 no. 1 pp. 104-110 2015.

  • [54] D. O. Gomezelj and T. Mihalič “Destination competitiveness—Applying different models the case of Slovenia” Tourism management vol. 29 no. 2 pp. 294-307 2008.

  • [55] T.-. SURS Annual Report on Tourism 2015 - Slovenia (National annual reports on tourism). Ljubljana: Statistical Office of the Republic of Slovenia 2015.

  • [56] T. W. T. T. C. (WTTC) Travel & Tourism: Economic Impact 2015-Slovenia London: The World Travel & Tourism Council (WTTC) 2015.

  • [57] R. J. Hyndman A. B. Koehler R. D. Snyder and S. Grose “A state space framework for automatic forecasting using exponential smoothing methods” International Journal of forecasting vol. 18 no. 3 pp. 439-454 2002.

  • [58] R. J. Hyndman and A. B. Koehler “Another look at measures of forecast accuracy” International journal of forecasting vol. 22 no. 4 pp. 679-688 2006.

  • [59] L. F. Tratar B. Mojškerc and A. Toman “Demand forecasting with four-parameter exponential smoothing” International Journal of Production Economics vol. 181 pp. 162-173 2016.

  • [60] E. S. Gardner Jr and E. McKenzie “Forecasting trends in time series” Management Science vol. 31 no. 10 pp. 1237-1246 1985.

  • [61] E. S. Gardner Jr and E. McKenzie “Note—Seasonal exponential smoothing with damped trends” Management Science vol. 35 no. 3 pp. 372-376 1989.

  • [62] H. B. Mitchell Data fusion: concepts and ideas. New York: Springer Science & Business Media 2012.

  • [63] J. Sueur Sound Analysis and Synthesis with R. Basel: Springer 2018.

  • [64] John E. Hanke and D. Wichern Business Forecasting: Pearson New International Edition (9e). Melbourne: Pearson Australia Group Pty Ltd 2013.

  • [65] Bruce L. Bowerman Richard O’Connell and A. Koehler Forecasting Time Series and Regression London: Cengage Learning 2005.

  • [66] D. Dragan T. Kramberger and M. Intihar “A comparison of Methods for Forecasting the Container Throughput in North Adriatic Ports” in Conference IAME Norfolk 2014.

  • [67] J. A. D. Jennifer L. Castle and F. H. David Some forecasting principles from the M4 competition. Magdelen College and Nuffield College 2019.

  • [68] S. Makridakis E. Spiliotis and V. Assimakopoulos “The M4 Competition: Results findings conclusion and way forward” International Journal of Forecasting · vol. 34 no. 4 pp. 802-808 2018.

  • [69] G. E. Box G. M. Jenkins G. C. Reinsel and G. M. Ljung Time series analysis: forecasting and control. New York: John Wiley & Sons 2015.

  • [70] L. Ljung System identification: theory for the user. Upper Saddle River New Jersey: Prentice-Hall 1987 pp. 519-519.

  • [71] L. Ljung System Identification Toolbox for use with MATLAB. Nattick: Mathworks 2011.

  • [72] S. Gričar and Š. Bojnec Aplikacija metodologije časovnih serij na primeru turističnih cen. Koper: Založba Univerze na Primorskem 2016.

  • [73] R. Powell “Risk scenarios” in “Asia Regional Strategic Forecast: Preparing For The Paradigm Shift. Globalisation and the Asian business environment: The Economist Corporate Network Risk scenarios” The Economist Corporate Network. SouthEast Asia2017.

  • [74] N. Rahman M. Muridan and A. Najib “A Maritime Forecasting Method for Analysing the Total Cargo Handling at Johor Port Berhad from 2013 to 2020” International Journal of Business Management Economic Research vol. 6 no. 3 pp. 187-93 2015.

  • [75] L. Hsieh “Roots of the next financial crisis.” ed. Reuters: Reuters 2017.

  • [76] W. Buiter E. Rahbari M. Saunders S. Luna J. Hale and G. Menuet Is China leading the world into recession (Global Economic Views Citi Research). New York: Citigroup Global Markets Inc. 2015.

  • [77] G. Xie S. Wang Y. Zhao and K. K. Lai “Hybrid approaches based on LSSVR model for container throughput forecasting: a comparative study” Applied Soft Computing vol. 13 no. 5 pp. 2232-2241 2013.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 187 32
PDF Downloads 130 130 23