Environmental Modelling of Forest Vegetation Zones as A Support Tool for Sustainable Management of Central European Spruce Forests

Open access


The impact of climate change on forest ecosystems may manifest itself by a shift in forest vegetation zones in the landscape northward and into higher elevations. Studies of climate change-induced vegetation zone shifts in forest ecosystems have been relatively rare in the context of European temperate zone (apart from Alpine regions). The presented paper outlines the results of a biogeographic model of climatic conditions in forest vegetation zones applied in the Central European landscape. The objective of the study is a prediction of future silvicultural conditions for the Norway spruce (Picea abies L. Karst.), which is one of the principal tree species within European forests. The model is based on a general environmental dependence of forest vegetation zones on the long-term effect of altitudinal and exposure climates defined by the mean and extreme air temperatures and the amount and distribution of atmospheric precipitation. The climatological data for the model were provided by a validated regional climate database for 2010 – 2090 according to the SRES A1B scenario, bound to specific geo-referenced points in the landscape. The geobiocoenological data in the model were provided by the Biogeography Register database which contains ecological data on the landscape bound to individual cadastres of the entire Czech Republic. The biogeographic model applies special programs (the FORTRAN programming language) in the environment of geographic information systems. The model outputs can be clearly graphically visualized as scenarios of predicted future climatic conditions of landscape vegetation zones. Modelling of the regional scenario of changes in the climatic conditions of forest vegetation zones reveals that in the prediction period of 2070 and beyond, good and very good climatic conditions for the cultivation of forests with dominant Norway spruce will be found only in some parts of its today’s native range in forest vegetation zones 5 – 8. Based on the results provided by the regional scenario, the authors of this paper recommend fundamental reassessment of the national strategy of sustainable forest management in the Czech Republic, stipulating that the current practice of spruce cultivation be reduced only to areas specifically defined by the biogeographic model. The paper shows that biogeographic models based on the concept of vegetation zoning can be applied not only in regional scenarios of climate change in the landscape but also as support tools for the creation of strategies of sustainable forest management.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ackerman F. De Canio S. J. Howarth R. B. Sheeran K. (2009). Limitations of integrated assessment models of climate change. Climatic Change 95 č. 3-4 s. 297-315.

  • Anonymous (2014). Strategie přizpůsobení se změně klimatu v podmínkách ČR. Ministry of Environment of the Czech republic Prague.

  • Bachelet D. R. Neilson R. P. Lenihan J. M. Drapek R. J. (2001). Climate change effects on vegetation distribution and carbon budget in the U. S. Ecosystems 4 s. 164-185.

  • Bakkenes M. Alkemade R.M. Ihle F. Leemans R. Latour J.B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8: 390-407

  • Botkin D. B. (2007). Forecasting the effects of global warming on biodiversity. BioScience 57 s. 227-236.

  • Brázdil R. Trnka M. eds. (2015). Historie počasí a podnebí v českých zemích XI: Sucho v českých zemích: minulost současnost a budoucnost. Centrum výzkumu globální změny Akademie věd České republiky v.v.i. Brno 402 s.

  • Buček A. Lacina J. (2006). Biogeografická diferenciace v geobiocenologickém pojetí a její využití v krajinném plánování. In: Dreslerová J. Packová P. (eds.): Ekologie krajiny a krajinné plánování (s. 18-29). Lesnická práce Kostelec nad Černými lesy.

  • Buček A. Lacina J. (2007). Geobiocenologie II. Geobiocenologická typologie krajiny České republiky. Mendelova zemědělská a lesnická univerzita Brno 244 s.

  • Büntgen U. Frank D.C. Kaczka R.J. Verstege A. Zwijacz-Kozica T. Esper J. (2007). Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains. Tree Physiology 27 s. 689–702.

  • Campioli M. Vincke C. Jonard M. Kint V. Demarée G. Ponette G. (2012). Current status and predicted impact of climate change on forest production and biogeochemistry in the temperate oceanic European zone: review and prospects for Belgium as a case study. Journal of Forest Research 17: 1-18.

  • Drégelyi-Kiss Á. Drégelyi-Kiss G. Hufnagel L. (2008). Ecosystems as climate controllers – biotic feedbacks. Applied Ecology and Environmental Research 6 č. 2 s. 11-134.

  • Dubrovský M. Hayes M. Pierpaolo D. Trnka M. Svoboda M. Pierpaolo Z. (2014). Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Regional Environmental Change 14: 1907-1919.

  • Garamvoelgyi A. Hufnagel L. (2013). Impacts f climate change on vegetation distribution no.1. Climate change induced vegetation shifts in the Palearctic region. Applied Ecology and Environmental Research 11 č. 1 s. 79-122.

  • Giorgi F. Hewitson B. Christensen J. Hulme M. Von Storch H. Whetton P. Jones R. Merns I. Fu C. (2002). Regional climate information – Evaluation and projection. In: Houghton J. T. Ding Y. Griggs D. J. Noguer M. Van der Linden P. Dai X. Maskell K. Johnson C. I. (eds.): Climate Change 2001: The Scientific Basis (s. 583-638). Cambridge Univ. Press New York.

  • Gonzales P. Neilson R. P. Lenihan J. M. Drapek R. J. (2010). Global patterns in the vulnerability of ecosystems to vegetation shift due to climate change. Global Ecology & Biogeography 19 s. 755-768.

  • Grassl H. (2000). Status and improvements of coupled general circulation models. Science 288 s. 1991-1997.

  • Griess V.C. Acevedo R. Härtl F. Staupendahl K. Knoke T. (2012). Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. Forest Ecology and Management 267: 284–296.

  • Iverson L.R. Mckenzie D. (2013). Tree-species range shifts in a changing climate: detecting modelling assisting. Landscape Ecology 28 s. 879-889.

  • Jactel H. Petit J. Desprez-Loustau M.L. Delzon S. Piou D. Battisti A. Koricheva J. (2012). Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biology 18: 267–276

  • Jiménez-Alfaro B. MarcenóC. Bueno A. Gavilán R. Obeso J. R. (2014). Biogeographic deconstruction of alpine plant communities along altitudinal and topographic gradients. Journal of Vegetation Science 25 s. 1 s. 160-171.

  • Jirásek J. (1996). Společenstva přirozených smrčin České republiky. Preslia 67: 225-259.

  • Jönsson A.M. Lagergren F. Smith B. (2015). Forest management facing climate change – an ecosystem model analysis of adaptation strategies. Mitigation and Adaptation Strategies for Global Change 20: 201-220

  • Keskitalo E.C.H. (2011). How can forest management adapt to climate change? Possibilities in different forestry systems. Forests 2:415–430

  • Kharuk V.I. Im S.T. Dvinskaya M.L. Golukov A.S. Ranson K.J. (2015). Climate-induced mortality of spruce stands in Belarus. Environmental Research Letters 10: 125006.

  • Kirilenko A. P. Solomon A. M. (1998). Modelling dynamic vegetation response to rapid climate change using bioclimatic classification. Climatic Change 38 s. 15-49.

  • Klenk N.L. Adams B.W. Bull G.Q. Innes J.L. Cohen S.J. Larson B.C. (2011). Climate change adaptation and sustainable forest management: A proposed reflexive research agenda. Forest Chronicle 87:351–357

  • Kongsager R. Locatelli B. Chazarin F. (2016). Addressing Climate Change Mitigation and Adptation Together: A Global Assessment of Agriculture and Forestry Projects. Environmental Management 57: 271-282.

  • Konvička M. Maradová M. Beneš J. Fric Z. Kepka P. (2003). Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Global Ecological Biogegraphy 12 s. 403-410.

  • Kopecká V. Machar I. Buček A. Kopecký A. (2013). The Impact of Climate Changes on Sugar Beet Growing Conditions in the Czech Republic. Listy cukrovarnické a řepařské 129 č. 11 s. 326-329.

  • Kulhavý J. (2004). A new concept in sustainable forest management - the need for forest ecosystem and landscape research. Journal of Forest Science 50(11): 520-525.

  • Kupka I. (2006). Is the Lang’s rain factor usable for assessing the microclimate influence on growth height of forest culture? Reports of Forestry Research 51(3): 153-156.

  • Kutnar L. Kobler A. (2011). Prediction of forest vegetation shift due to different climate-change scenarios in Slovenia. Sumarski List 135 č. 3-4 s. 113-126.

  • Lasch-Born P. Suckow F. Gutsch M. Reyer Ch. Hauf Y. Murawski A. Pilz T. (2015). Forests under climate change: potential risks and Opportunities. Meteorologische Zeitschrift 24: 157–172

  • Lindner M. Fitzgerald J.B. Zimmermann N.E. Reyer Ch. Delzon S. van der Maaten E. Schelhaas M.J. Lasch P. Eggers J. van der Maaten-Theunissen M. Suckow F. Psomas A. Poulter B. Hanewinkel M. (2014). Climate change and European forests: What do we know what are the uncertainties and what are the implications for forest management? Journal of Environmental Management 146: 69-83.

  • Lipský Z. (2000). Sledování změn v kulturní krajině. Česká zemědělská univerzita v nakladatelství a vydavatelství Lesnická práce s. r. o. Kostelec nad Černými lesy 71 s.

  • Lomolino M. V. Riddle B. R. Brown J. H. (2005). Biogeography. 3rd edition. Sinauer Assoc. Inc. Sunderland 752 s.

  • Mackovčin P. (2000). A multi-level ecological network in the Czech Republic: Implementing the territorial system of ecological stability. GeoJournal 51 č. 3 s. 211-220.

  • Machar I. (2013). Applying of the Biogeography Register to Predicting the Consequences of Global Climate Changes on the Landscape in the Czech Republic. In: Proceedings of the 11th Int. Conference on Environment Ecosystems and Development (p. 15-18). Brasov Romania.

  • Macků J. (2014). Climatic characteristics of forest vegetation zones of the Czech Republic. Journal of Landscape Ecology (Brno) 7 č. 3 s. 39-48.

  • Málek J. (1984). Dubojehličnatý vegetační stupeň v ČR. Zprávy Geografického stavu ČASV v Brně 21(4): 35-54.

  • Matthies B.D. Valsta L.T. (2016). Optimal forest species mixture with carbon storage and albedo effect for climate change mitigation. Ecological Economics 123: 95–105.

  • Mermet L. Farcy C. (2011). Contexts and concepts of forest planning in a diverse and contradictory world. Forest Policy Economics 13:361–365

  • Morin X. Thuiler W. (2009). Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90 č.5. s. 1301-1313.

  • Nakićenović N. Swart R. (2000). Special Report on Emissions Scenarios. A Special Report of Working Group III of the IPCC. Cambridge Univ. Press New York. 612 s.

  • Naudts K. Chen Y. McGrath M.J. Ryder J. Valade A. Otto J. Luyssaert S. (2016). Europe’s forest management did not mitigate climate warming. Science 351 6273: 597-599.

  • Neilson R. P. Pitelka L. F. Solomon A. M. Nathan R. Midgley G. F. Fragoso J. M. V. Lishke H. Thompson K. (2005). Forecasting Regional to Global Plant Migration in Response to Climate Change. Bioscience 55 č. 9 s. 749-759.

  • Neilson R. P. Prentice I. C. Smith B. (1998). Simulated changes in vegetation distribution under global warning. In: Watson R. T. Zinyowera M.C. Moss R. H. Dokken D. J. (eds): The Regional Impacts of Climate Change: An assessment of Vulnerability (p. 439-456). Cambridge Univ. Press.

  • Neuner S. Albrecht A. Cullmann D. Engels F. Griess V.C. Hahn A. Hanewinkel M. Härtl F. Kölling CH. Kaistaupendahl Knoke T. (2015). Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Global Change Biology 21: 935-946.

  • Oberhuber W. Hammerle A. Kofler W. (2015). Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science 6: 703

  • Olesen J.E. Trnka M. Kersebaum K.C. Skjelvag A.O. Seguin B. Peltonen-Sainio P. Rossi F. Kozyra J. Micale F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34 s. 96-112.

  • Opdam P. Wascher D. (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation 117 s. 285-297.

  • Panayotov M. Kuakowski D. Tsvetanov N. Krumm F. Barbeito I Bebi P. (2016). Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. Forest Ecology and Management 369: 74-88

  • Parmesan C. (2005). Biotic Response: Range and Abundance Changes. In: Lovejoy T.E. Hannah L. (eds.) Climate change and Biodiversity (p. 41-55). Yale Univ. Press New Haven and London.

  • Peterson A. T. Soberon T. J. Sanchez-Cordero V. (1999). Conservatism of ecological niches in evolutionary time. Science 285 s. 1265-1267.

  • Peterson A. T. Tian H. Martínez-Meyer E. Soberón J. Sánchez-Cordero V. Huntley B. (2005). Modelling Distributional Shifts of Individual Species and Biomes. In: Lovejoy T.E. Hannah L. (eds.) Climate change and Biodiversity (pp. 211-228). Yale Univ. Press New Haven and London.

  • Prentice I.C. Webb N.R. (1989). Developing a global vegetation dynamics model: Results of an IIASA RR-89-7. Institute for Applied Systems Analysis Laxenburg Austria.

  • Pretel J. (2009). Současný vývoj klimatu a jeho výhled. Ochrana přírody suppl. 46 s. 2-7. Pretel J. ed. (2011). Zpřesnění dosavadních odhadů dopadů klimatické změny v sektorech vodního hospodářství zemědělství a lesnictví a návrhy adaptačních opatření (V) - Závěrečná zpráva o řešení 2007–2011 Projekt VaV – SP/1a6/108/07. ČHMÚ Praha. 126 s.

  • Pretzsch H. Biber P. Uhl E. Dauber E. (2015). Long-term stand dynamics of managed spruce-fir-beech mountain forests in Central Europe: structure productivity and regeneration success. Forestry 88: 407-428.

  • Průša E. (2001). Pěstování lesů na typologických základech. Lesnická práce s. r. o.

  • Reif J. Storch D. Voříšek P. Šťastný K. Bejček V. (2008). Bird-habitat associations predict population trends in central European forest and farmland birds. Biodiversity Conservation 17 s. 3307-3319.

  • Rosbakh S. Bernhardt-Römermann M. Poschlod P. (2014). Elevation matters: contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps. Alpine Botany 124 č. 2 s. 143-154.

  • Santini A. Ghelardini L. De Pace C. Desprez-Loustau M.L. Capretti P. Chandelier A. Cech T. Chira D. Diamandis S. Gaitniekis T. Hantula J. Holdenrieder O. Jankovsky L. Jung T. Jurc D. Kirisits T. Kunca A. Lygis V. Malecka M. Marcais B. Schmitz S. Schumacher J. Solheim H. Solla A. Szabo I. Tsopelas P. Vannini A. Vettraino A.M. Webber J. Woodward S. Stenlid J. (2013). Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist 197(1): 238-250.

  • Schröter D. Cramer W. Leemans R. Prentice I. C. Araújo M. B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science 310 s. 1333-1337.

  • Skaloš J. Engstová B. (2010). Methodology for mapping non-forest wood elements using historic cadastral maps and aerial photographs as a basis for management. Journal of Environmental Management 91 s. 831-843.

  • Skrøppa T. (2003). EUFORGEN Technical Guidelines for genetic conservation and use for Norway spruce (Picea abies). International Plant Genetic Resources Institute Rome Italy. 6pp.

  • Sturrock R.N. Frankel S.J. Brown A.V. Hennon P.E. Kliejunas J.T. Lewis K.J. Worrall J.J. Woods A.J. (2011). Climate change and forest diseases. Plant Pathology 60:133–149

  • Subramanian N. Bergh J. Johansson U. Nilsson U. (2016). Adaptation of Forest Management Regimes in Southern Sweden to Increased Risks Associated with Climate Change. Forests 7 8.

  • Svobodová J. Voženílek V. (2010). Relief for Models of Natural Phenomena. In: Anděl J. Bičík I. Dostál P. Shasneshin S. (eds.): Landscape Modelling: Geographical Space Transformation and Future Scenarios (Urban and Landscape Perspectives) (pp. 183-196). Springer Dordrecht.

  • Šálek L. Marušák R. Tipmann L Turečková M. (2013). Autochthonous Norway spruce outside mountain regions in the Czech Republic. Scientia Agriculturae Bohemica 44 151–158.

  • Šenfelder M Maděra P. (2011). Population Structure and Reproductive strategy of Norway spruce (Picea abies L. Karst) above the Former Pastoral Timberline in the Hruby Jesenik Mountains Czech Republic. Mountain Research and Development 31(2): 131-143.

  • Švajda J. (2008). Climate change and timber line in the European mountains – current knowledge and perspectives. Oecologia Montana 17 s. 30-33.

  • Švajda J. Solar J. Janiga M. Buliak M. (2011). Dwarf Pine (Pinus mugo) and selected abiotic habitat conditions in the Western Tatra Mountains. Mountain Research and Development 31 č. 3 s. 220-228.

  • Treml V. Chuman T. (2015). Ecotonal Dynamics of the Altitudinal Forest Limit are Affected by Terrain and Vegetation Structure Variables: An Example from the Sudetes Mountains in Central Europe. Arctic Antarctic and Alpine Research 47 č. 1 s. 133-146.

  • Trnka M. Brázdil R. Dubrovský M. Semerádová D. Štěpánek P. Dobrovolný P. Možný M. Eitzinger J. Málek J. Formayer H. Balek J. Žalud Z. (2011). A 200-year climate record in Central Europe: implications for agriculture. Agronomy for Sustainable Environment 31 č. 4 s. 631-641.

  • Tuček P. Caha J. Janoška Z. Vondráková A. Samec P. Voženílek V. Bojko J. (2013). Forest vulnerability zones in the Czech Republic. Journal of Maps 10 č. 1 s. 179-182.

  • Úradníček L. Maděra P. Kolibáčová S. Koblížek J. Šefl J. (2001). Dřeviny české republiky. Matice Lesnická s.r.o. Písek.

  • Vahalík P. Mikita T. (2011). Possibilities of forest altitudinal vegetation zones modelling by geoinformatic analysis. Journal of Landscape Ecology (Czech Republic) 4 č. 2 s. 49-61.

  • Viewegh J. Kusbach A. Mikeska M. (2003). Czech forest ecosystem classification. Journal of Forest Science 49: 85-93.

  • Vlčková V. (2014). Systémový charakter modelování možných trendů důsledků klimatických změn nástroji geografických informačních systémů. Acta Informatica Pragensia 3 č. 1 s. 70-88.

  • Vlčková V. Buček A. Machar I. Daněk T. Pechanec V. Brus J. Kiliánová H. (2015). The application of geobiocoenological landscape typology in the modelling of climate change implications. Journal of Landscape Ecology (Czech Republic) 8 č. 2 s. 69-81.

  • Vondráková A. Vávra A. Voženilek V. (2013). Climatic regions of the Czech Republic. Journal of Maps 9 č. 3 s. 425-430.

  • Walther G.R. (2010). Community and ecosystem responses to recent climate change. Philosophical transactions of the Royal society B - Biological Sciences 365 (1549) s. 2019-2024.

  • Walther G. R. Post E. Convey P. Menzel A. Parmesan C. Beebee T. J. C. Fromentin J. M. Hoegh-Guldberg O. Fairlein F. (2002). Ecological responses to recent climate change. Nature 416 s. 389-395.

  • Woodward F. I. Lomas M. R. Betts R. A. (1998). Vegetation-climate feedback in a greenhouse world. Philosophical Transactions of the Royal Society of London B -Biological Sciences 353 (1356) s. 38-39.

  • Yee T. W. Mitchell N. D. (1991). Generalized additive models in plant ecology. Journal of Vegetation Sciences 2 s. 587-602.

  • Zajaczkowski J. Brzeziecki B. Perzanowski K. Kozak I. (2013). Wplyw potencjalnych zmian klimatycznych na zdolność konkurencyjna glównych gatunków drzew w Polsce. Sylwan 157 č. 4 s. 253-261.

  • Zang C. Hartl-Meier C. Dittmar C. Rothe A. Menzel A. (2014). Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biology 20 12: 3767-3779.

  • Zell J. Hanewinkel M. (2015). How treatment storm events and changed climate affect productivity of temperate forests in SW Germany. Regional Environmental Change 15:1531–1542

  • Zlatník A. (1976). Přehled skupin typů geobiocénů původně lesních a křovinných v ČSR. Zprávy Geografického ústavu ČSAV 13s. 55-64.

  • Zubizarreta-Gerendiain A. Pukkala T. Kellomäki S. Garcia-Gonzalo J. Ikonen V-P. Peltola H. (2015). Effects of climate change on optimised stand management in the boreal forests of central Finland. European Journal of Forest Research 134: 273-280.

Journal information
Impact Factor

CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.183
Source Normalized Impact per Paper (SNIP) 2018: 0.233

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 121 10
PDF Downloads 105 105 10