A Genomic Approach to Characterize the Vulnerable Patient – a Clinical Update

Open access


Atherosclerosis is the elemental precondition for any cardiovascular disease and the predominant cause of ischemic heart disease that often leads to myocardial infarction. Systemic risk factors play an important role in the starting and progression of atherosclerosis. The complexity of the disease is caused by its multifactorial origin. Besides the traditional risk factors, genetic predisposition is also a strong risk factor. Many studies have intensively researched cardioprotective drugs, which can relieve myocardial ischemia and reperfusion injury, thereby reducing infarct size. A better understanding of abnormal epigenetic pathways in the myocardial pathology may result in new treatment options. Individualized therapy based on genome sequencing is important for an effective future medical treatment. Studies based on multiomics help to better understand the pathophysiological mechanism of several diseases at a molecular level. Epigenomic, transcriptomic, proteomic, and metabolomic research may be essential in detecting the pathological phenotype of myocardial ischemia and ischemic heart failure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Reed GW Rossi JE Cannon CP. Acute myocardial infarction. The Lancet. 2017;389:197-210.

  • 2. Hartley A Marshall DC Salciccioli JD Sikkel MB Maruthappu M Shalhoub J. Trends in Mortality from Ischemic Heart Disease and Cerebrovascular Disease in Europe: 1980 to 2009. Circulation. 2016;133:1916-1926.

  • 3. Lusis AJ. Atherosclerosis. Nature. 2000;407:233-241.

  • 4. Ross R. Atherosclerosis – An Inflammatory Disease. N Engl J Med. 1999;340:115-126.

  • 5. Libby P Theroux P. Pathophysiology of Coronary Artery Disease. Circulation. 2005;111:3481-3488.

  • 6. Libby P Ridker PM Maseri A. Inflammation and Atherosclerosis. Circulation. 2002;105:1135-1143.

  • 7. Conti P Shaik-Dasthagirisaeb Y. Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Cent Eur J Immunol. 2015;3:380-386.

  • 8. Hansson GK. Inflammation Atherosclerosis and Coronary Artery Disease. N Engl J Med. 2005;352:1685-1695.

  • 9. Kuller L Borthani N Furberg C et al. Prevalence of Subclinical Atherosclerosis and Cardiovascular Disease and Association with Risk Factors in the Cardiovascular Health Study. Am J Epidemiol. 1994;139:1164-1179.

  • 10. Gisterå A Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13:368-380.

  • 11. Marenberg ME Risch N Berkman LF Floderus B de Faire U. Genetic Susceptibility to Death from Coronary Heart Disease in a Study of Twins. N Engl J Med. 1994;330:1041-1046.

  • 12. Zdravkovic S Wienke A Pedersen NL Marenberg ME Yashin AI De Faire U. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med. 2002;252:247-254.

  • 13. Musunuru K Kathiresan S. Genetics of Coronary Artery Disease. Annu Rev Genomics Hum Genet. 2010;11:91-108.

  • 14. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851-861.

  • 15. Green ED Watson JD Collins FS. Human Genome Project: Twenty-five years of big biology. Nature. 2015;526:29-31.

  • 16. Helin K Dhanak D. Chromatin proteins and modifications as drug targets. Nature. 2013;502:480-488.

  • 17. Haldar SM McKinsey TA. BET-ting on chromatin-based therapeutics for heart failure. J Mol Cell Cardiol. 2014;74:98-102.

  • 18. Ashley EA Butte AJ Wheeler MT et al. Clinical assessment incorporating a personal genome. The Lancet. 2010;375:1525-1535.

  • 19. Zeller T Blankenberg S. Blood-Based Gene Expression Tests: Promises and Limitations. Circ Cardiovasc Genet. 2013;6:139-140.

  • 20. Perrino C Barabási AL Condorelli G et al. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2017;113:725-736.

  • 21. Pedrotty DM Morley MP Cappola TP. Transcriptomic Biomarkers of Cardiovascular Disease. Prog Cardiovasc Dis. 2012;55:64-69.

  • 22. Wang L. Mutation of MEF2A in an Inherited Disorder with Features of Coronary Artery Disease. Science. 2003;302:1578-1581.

  • 23. Weng L Kavaslar N Ustaszewska A et al. Lack of MEF2A mutations in coronary artery disease. J Clin Invest. 2005;115:1016-1020.

  • 24. Xu DL Tian HL Cai WL et al. Novel 6-bp deletion in MEF2A linked to premature coronary artery disease in a large Chinese family. Mol Med Rep. 2016;14:649-654.

  • 25. Rosenberg S. Multicenter Validation of the Diagnostic Accuracy of a Blood-Based Gene Expression Test for Assessing Obstructive Coronary Artery Disease in Nondiabetic Patients. Ann Intern Med. 2010;153:425.

  • 26. Small EM Frost RJA Olson EN. MicroRNAs Add a New Dimension to Cardiovascular Disease. Circulation. 2010;121:1022-1032.

  • 27. Varga ZV Zvara Á Faragó N et al. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic preand postconditioning: protectomiRs. Am J Physiol-Heart Circ Physiol. 2014;307:H216-H227.

  • 28. Eulalio A Mano M Ferro MD et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492:376-381.

  • 29. De Windt LJ Thum T. State-of-the-art on non-coding RNA bioinformatics diagnostics and therapeutics in cardiovascular diseases. J Mol Cell Cardiol. 2015;89:1-2.

  • 30. Greco CM Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol. 2015;12:488-497.

  • 31. Ferdinandy P Hausenloy DJ Heusch G Baxter GF Schulz R. Interaction of risk factors comorbidities and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning postconditioning and remote conditioning. Pharmacol Rev. 2014;66:1142-1174.

  • 32. Gidlöf O Johnstone AL Bader K et al. Ischemic Preconditioning Confers Epigenetic Repression of Mtor and Induction of Autophagy Through G9a-Dependent H3K9 Dimethylation. J Am Heart Assoc. 2016;5.

  • 33. Fernandes M Patel A Husi H. C/VDdb: A multi-omics expression profiling database for a knowledge-driven approach in cardiovascular disease (CVD). PLoS One. 2018;13:e0207371.

  • 34. Csont T Murlasits Z Ménesi D et al. Tissue-specific Gene Expression in Rat Hearts and Aortas in a Model of Vascular Nitrate Tolerance. J Cardiovasc Pharmacol. 2015;65:485-493.

  • 35. Kato N Liang Y-Q Ochiai Y Jesmin S. Systemic evaluation of gene expression changes in major target organs induced by atorvastatin. Eur J Pharmacol. 2008;584:376-389.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 11
PDF Downloads 22 22 6