Epicardial Fat and Coronary Vulnerability

Open access

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Oikonomou EK Williams MC Kotanidis CP et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;pii:ehz592.

  • 2. Timmis A Townsend N Gale C et al. ESC Scientific Document Group. European Society of Cardiology: cardiovascular disease statistics 2017. Eur Heart J. 2018;39:508-579.

  • 3. Mathers CD Loncar D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006;3:e442.

  • 4. Reed GW Rossi JE Cannon CP. Acute myocardial infarction. Lancet. 2017;389197-210.

  • 5. Stefanadis C Antoniou C Tsiachris D Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6 e005543.

  • 6. Brown AJ Teng Z Evans PC Gillard JH Samady H Bennett MR. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol. 2016;13:210-220.

  • 7. Nakanishi K Fukuda S Tanaka A et al. Epicardial Adipose Tissue Accumulation Is Associated with Renal Dysfunction and Coronary Plaque Morphology on Multidetector Computed Tomography. Circ J. 2015;80:196-201.

  • 8. Benedek T Rat N Hodas H et al. The Assessment of Epicardial Adipose Tissue in Acute Coronary Syndrome Patients. A Systematic Review. Journal of Cardiovascular Emergencies. 2017;3:18-29.

  • 9. Nerlekar N Brown AJ Muthalaly RG et al. Association of Epicardial Adipose Tissue and High-Risk Plaque Characteristics: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2017;6: e006379.

  • 10. Talman AH Psaltis PJ Cameron JD Meredith IT Seneviratne SK Wong DT. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther. 2014;4:416-429.

  • 11. Nov O Shapiro H Ovadia H et al. Interleukin-1beta regulates fat-liver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability. PLoS One. 2013;8:e53626.

  • 12. Bo X Ma L Fan J et al. Epicardial fat volume is correlated with coronary lesion and its severity. Int J Clin Exp Med. 2015;8:4328-4334.

  • 13. Mazurek T Zhang L Zalewski A et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460-2466.

  • 14. Motoyama S Ito H Sarai M et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol. 2015;66:337-346.

  • 15. Nakanishi K Fukuda S Tanaka A et al. Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in non-obese subjects with coronary artery disease. Atherosclerosis. 2014;237:353-360.

  • 16. Tachibana M Miyoshi T Osawa K et al. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Heart Vessels. 2016;31:1758-1766.

  • 17. Larsen BA Laughlin GA Saad SD et al. Pericardial fat is associated with all-cause mortality but not incident CVD: the Rancho Bernardo Study. Atherosclerosis. 2015;239:470-475.

  • 18. Rabkin SW Campbell H. Comparison of reducing epicardial fat by exercise diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16:406-415.

  • 19. Higgins JP Thompson SG Deeks JJ Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557-560.

  • 20. Hirata Y Yamada H Kusunose K et al. Clinical utility of measuring epicardial adipose tissue thickness with echocardiography using a high-frequency linear probe in patients with coronary artery disease. J Am Soc Echocardiogr. 2015;28:1240-1246.e1.

  • 21. Mancio J Oikonomou EK Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart. 2018;104:1654-1662.

  • 22. Franssens BT Nathoe HM Leiner T et al. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol. 2017;24:660-670.

  • 23. Abazid RM Smettei OA Kattea MO et al. Relation between epicardial fat and subclinical atherosclerosis in asymptomatic individuals. J Thorac Imaging. 2017;32:378-382.

  • 24. Joshi NV Vesey AT Williams MC et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705-713.

  • 25. Antonopoulos AS Sanna F Sabharwal N et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9: eaal2658.

  • 26. Mancio J Oikonomou EK Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart. 2018;104:1654-1662.

  • 27. Parajkó Z Mester A Kovács I et al. Noninvasive Functional Characterization of Coronary Plaques by Coronary Computed Tomography – Beyond the Morphology of Vulnerable Plaques. Journal of Interdisciplinary Medicine. 2019;4:132-135.

  • 28. Mitra N Cernica D Hodas R et al. Noninvasive Imaging Biomarkers of Vulnerable Coronary Plaques – a Clinical Update. Journal of Interdisciplinary Medicine. 2019;4:136-140.

  • 29. Szabó E Parajkó Z Opincariu D et al. A Genomic Approach to Characterize the Vulnerable Patient – a Clinical Update. Journal of Interdisciplinary Medicine. 2019;4:141-144.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 12
PDF Downloads 41 41 10