Simulating Environmental Impacts Based On The Example Of Roşia Montană

Open access


One of the challenges of modern terrain modelling methods is to incorporate non-existing, planned features in the output. Remote sensing based solutions can only detect structures and shapes that are already present in the environment. In order to assess the impacts of a planned development on the surrounding landscape properly it is inevitable to solve this issue. In addition to the environmental, social and economic consequences, mining activities, especially open cast mining will also leave significant scars on the landscape. These can not only have a visual effect but also impact local weather conditions by changing winds, precipitation patterns. The current paper demonstrates a collection of methods and techniques able to cope with the various challenges that arise when modelling the landscape impacts of such developments. The experiments were performed in the area of Roşia Montană, where a Canadian company plans to create the largest open cast gold mine in Europe. The results of the terrain modelling process allow for the quantification of the estimated impacts on the terrain and the land cover of the area caused by the mining project. The presented methodology and visualisation tools can also facilitate the decision support mechanisms making the communication ‘more understandable’ amongst stakeholders; information meetings and public hearings involving organizing groups at any level. Obtaining the results required the development of several unconventional techniques especially in terrain modelling and visual landscape simulation, involving the combination of sometimes very different base methods.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ANCPI 2014 Agenţia Naţională De Cadastru Şi Publicitate Imobiliară INSPIRE HY View Service – [accessed November 2014]

  • Bara A. 2002. Rosia Montana gold mine: a future predictable catastrophe. CEE Bankwatch Network CEE Bankwatch Network. Online: [Accessed: June 2015]

  • Bareth G. 2009. GIS- and RS-based spatial decision support: structure of a spatial environmental information system (SEIS). International Journal of Digital Earth 2(2) 134–154. DOI: 10.1080/17538940902736315

  • Bareth G. 2009. GIS- and RS-based spatial decision support: structure of a spatial environmental information system (SEIS). International Journal of Digital Earth 2(2) 134–154. DOI: 10.1080/17538940902736315.

  • Barton G. Bódis K. Geczi R. 2015. Modelling and visualising landscape and terrain impacts of planned developments In: Ružičková K. Inspektor T. (Eds.) Surface Models for Geosciences Lecture Notes in Geoinformation and Cartography 1-12. Springer International Publishing Switzerland ISBN: 978-3-319-18406-7 (Print) 978-3-319-18407-4 (Online). DOI: 10.1007/978-3-319-18407-4_1.

  • BBC. 2010. Hungary battles to stem torrent of toxic sludge. [Accessed: June 2015]

  • Buzoianu C. Țoc S. 2013. Misunderstanding opportunities: (post-) resettlement issues in the Recea neighbourhood of Alba Iulia Journal of Comparative Research in Anthropology and Sociology 4 (1) 21–40.

  • Constantin V. Ştefănescu L. Kantor C. M. 2015. Vulnerability assessment methodology: A tool for policy makers in drafting a sustainable development strategy of rural mining settlements in the Apuseni Mountains Romania Environmental Science & Policy 52 129–139. DOI:10.1016/j.envsci.2015.05.010

  • EEA. 2000. CORINE land cover technical guide – Addendum 2000. Technical report No 40 European Environment Agency Copenhagen pp. 105. [Accessed: June 2015]

  • ESRI. 1994. Surface Modeling with TIN Environmental Systems Research Institute Inc. Redlands CA.

  • Farr T. G. Rosen P. A. Caro E. Crippen R. Duren R. Hensley S. Kobrick M. Paller M. Rodriguez E. Roth L. Seal D. Shaffer S. Shimada J. Umland J. Werner M. Oskin M. Burbank D. Alsdorf D. 2007. The Shuttle Radar Topography Mission Reviews of Geophysics 45 RG2004. DOI: 10.1029/2005RG000183.

  • Földessy J. Bőhm J. 2012. Arany és cianid – lehetőségek és kockázatok. Magyar Tudomány 173 (5) 532–541.

  • Géczi R. 2011. Verespatak a múlt és a jövő között (Roşia Montana between past and future). In: Frisnyák S. Gál A (Eds). Kárpátmedence: tájak népek tevékenységek. Nyíregyháza Hungary 133–142.

  • Géczi R. Barton G. Bódis K. 2006. Verespatak egy lehetséges katasztrófa színhelye (Rosia Montana the site of a possible environmental disaster) Debreceni szemle 14 (3) 416–431.

  • Géczi R. Barton G. Bódis K. 2005 Evaluation of landscape and environmental changes in the Roşia Montana Basin using GIS methods In: Hřebíček J. Ráček J. (Eds.) Proceedings of the 19th International Conference Informatics for Environmental Protection Part 2 Masaryk University Brno Czech Republic 747–753 ISBN 80-210-3780-6

  • Géczi R. Bódis K. 2003 Környezeti monitoring Verespatak környékén (Environmental monitoring in the region of Roşia Montana) p. 72. Kriterion Cluj Napoca Romania. ISBN: 973-26-0734-3 973-82-3124-8.

  • Goodchild M.F. Steyaert L.T. Parks B.O. Johnston C. Maidment D.R. Crane M. Glendinning S. (Eds.). 1996. GIS and Environmental Modeling: Progress and Research Issues GIS World Books ISBN 1-882610-11-3 p. 486.

  • Haiduc I. 2003. Proiectul Rosia Montana intre riscuri si beneficii (The Rosia Montana mining project - between risks and benefits) Academica 13 (13-14) 77–80.

  • Hennig T. A. Kretsch J. L. Pessagno C. J. Salamonowicz P. H. Stein W. L. (2001): The Shuttle Radar Topography Mission. Digital Earth Moving. Lecture Notes In Computer Science 2181 65–77.

  • Hensley S. Rosen P. Gurrola E. 2000. The SRTM topographic mapping processor Geoscience and Remote Sensing Symposium 2000. Proceedings. IGARSS 2000. IEEE 2000 International 3 1168–1170.

  • Hutchinson M. F. 1996. A locally adaptive approach to the interpolation of digital elevation models. In Proceedings Third International Conference/Workshop on Integrating GIS and Environmental Modeling Santa Fe NM January 21-26 1996. Santa Barbara CA: National Center for Geographic Information and Analysis.

  • Hutchinson M. F. 1997. ANUDEM Version 4.6 User Guide (Revision: 26 August 1997) The Australian National University Centre for Resource and Environmental Studies Canberra.

  • Hutchinson M. F. Dowling T. I. 1991. A continental hydrological assessment of a new grid-based digital elevation model of Australia Hydrological Processes 5 (1) 45–58. In: Beven K. J. Moore I. D. (Eds.) 1995 Terrain analysis and distributed modelling in hydrology (Advances in Hydrological Processes) John Wiley & Sons 49–62.

  • Hutchinson M.F. 1988. Calculation of hydrologically sound digital elevation models. Proceedings of the Third International Symposium on Spatial Data Handling August 17-19 Sydney

  • ICPDR 2011. Red Sludge Spill in Hungary: One year after the accident International Commission for Protection of the Danube River Vienna Austria. Online: [Accessed: June 2015]

  • Laudien R. Christmann A. Brocks S. 2010. 3D data visualisation within spatial decision support systems by using ArcGIS engine. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences 38 Part II 472–477.

  • MTI 2013. Tízezrek tüntettek a verespataki aranybánya ellen [Accessed: June 2015.]

  • Parasca A.G. Butnaru G.I. 2014. Roşia Montana – Regional Impact. Procedia Economics and Finance 15 679–686. DOI: 10.1016/S2212-5671(14)00539-5

  • Paşca E. 2010. Gold Culture and the History of Industrial Heritage at Roşia Montană. Review of Historical Geography and Toponomastics 5 (9-10) 81–96.

  • Pettit C.J. Raymondb C.M. Bryanc B.A. Lewisa H. 2011. Identifying strengths and weaknesses of landscape visualisation for effective communication of future alternatives. Landscape and Urban Planning 100 231–241. DOI: 10.1016/j.landurbplan.2011.01.001

  • Peucker T. K. Fowler R. J. Little J. J. Mark D. M. 1978. The Triangulated Irregular Network In: Proceedings of the Digital Terrain Models (DTM) Symposium St Louis Missouri May 9-11 24–31.

  • Prommer M. Skwarek K. 2001. Report on the economic and social impacts of the cyanide spill and heavy metal pollution on River Tisza p. 55. Center for Environmental Studies Budapest Hungary.

  • RMGC 2015. Roșia Montană Gold Corporation [Accessed: June 2015].

  • Sheppard S. R.J. 2012. Visualizing Climate Change. Routledge p. 514.

  • Sheppard S.R.J. Cizek P. 2009. The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation. Journal of Environmental Management 90 102–2117. DOI: doi:10.1016/j.jenvman.2007.09.012

  • Sîntimbrean A. Bedelean H. 2002 Roşia. Montană - Alburnus Maior. Cetatea de scaun a aurului românesc Ed. Altip Alba. Iulia.

  • Téglás G. 1888. Ampelum mint Dacia aranybányászatának hatósági központja. Ref. Koll. Kolozsvár 22.

  • Tøttrup C. 2014. EU-DEM Statistical Validation Report DHI GRAS c/o Geocenter Denmark. [Accessed: June 2015].

  • Wolsink M. 2007 Wind power implementation: The nature of public attitudes: Equity and fairness instead of ‘backyard motives’. Renewable and Sustainable Energy Reviews 11 (6) 1188–1207. DOI:10.1016/j.rser.2005.10.005

  • WWF 2002. The Ecological Effects of Mining Spills in the Tisza River System in 2000 Vienna April 2002. [Accessed: June 2015].

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 23 4
PDF Downloads 102 38 4