Identification of Riparian Vegetation Types with Machine Learning Based on LiDAR Point-Cloud Made Along the Lower Tisza’s Floodplain

István Fehérváry 1  and Tímea Kiss 2
  • 1 , Szeged, Hungary
  • 2 University of Szeged, Department of Physical Geography and Geoinformatics, , Szeged, Hungary


The very dense floodplain vegetation on the artificially confined floodplains results in decreased flood conveyance, thus increase in flood levels and flood hazard. Therefore, proper floodplain management is needed, which must be supported by vegetation assessment studies. The aims of the paper are to introduce the method and the results of riparian vegetation classification of a floodplain area along the Lower Tisza (Hungary) based on automatized acquisition of airborne LiDAR survey. In the study area 15x15 m large training plots (voxels) were selected, and the statistical parameters of their LiDAR point clouds were determined. Applying an automatized parameter selection and 10-fold cross-validation he most suitable decision tree was selected, and following a series of classification steps the training plots were classified. Based on the decision tree all the pixels of the entire study area were analysed and their vegetation types were determined. The classification was validated by field survey. On the studied floodplain area the accuracy of the classification was 83%.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abernethy, B., Rutherfurd, I.D. 1998. Where along a river’s length will vegetation most effectively stabilise stream banks? Geomorphology 23, 55–75. DOI: 10.1016/s0169-555x(97)00089-5

  • Bengio, Y., Grandvalet, Y. 2004. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. Journal of Machine Learning Research 5, 1089–1105.

  • Brooks, G.R. 2005. Overbank deposition along the concave side of the Red River meanders, Manitoba, and its geomorphic significance. Earth Surface Processes and Landforms 30, 1617–1632. DOI: 10.1002/esp.1219

  • Corenblit, D., Tabacchi, E., Steiger, J., Gurnell, A.M. 2007. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews 84, 56–86. DOI: 10.1016/j.earscirev.2007.05.004

  • Geerling, G.W., Kater, E., van den Brink, C., Baptist, M.J., Regas, A.M.J., Smits, A.J.M. 2008. Nature rehabilitation by floodplain excavation: The hydraulic effect of 16 years of sedimentation and vegetation succession along the Waal River, NL. Geomorphology 99, 317–328. DOI: 10.1016/j.geomorph.2007.11.011

  • Grabmeier, J. L., Lambe, L. A. 2007. Decision trees for binary classification variables grow equally with the Gini impurity measure and Pearson’s chi-square test. International Journal of Business Intelligence and Data Mining 2(2), 213. DOI:10.1504/ijbidm.2007.013938

  • Heurich, M., Thoma, F. 2008. Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests. Forestry 81, 645–661. DOI: 10.1093/forestry/cpn038

  • Hudak, A., Crookston, N., Evans, J., Hall, D., Falkowski, M. 2008. Nearest neighbour imputation of species-level, plot-scale forest structure attributes from lidar data. Remote Sensing of Environment 112, 2232–2245. DOI: 10.1016/j.rse.2007.10.009

  • Jalonen, J., Järvelä, J., Virtanen, J.P., Vaaja, M., Kurkela, M., Hyyppä, H. 2015. Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modelling. Water 7(2), 420–437. DOI: 10.3390/w7020420

  • Jung, S.E., Kwak, S.A., Park, T., Lee, W.K, Yoo, S. 2011. Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners. Remote Sensing 3, 2346–2363. DOI: 10.3390/rs3112346

  • Kiss, T., Fiala, K., Sipos, Gy., Szatmári, G. 2019b. Long-term hydrological changes after various river regulation measures: are we responsible for flow extremes? Hydrology Research 50(2), 417–430. DOI: 10.2166/nh.2019.095

  • Kiss, T., Nagy, J., Fehérváry, I., Vaszkó, Cs. 2019a. (Mis)management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Science of the Total Environment 686, 931–945. DOI: 10.1016/j.scitotenv.2019.06.006

  • Kiss, T., Sándor, A. 2009. Land-use changes and their effect on floodplain aggradation along the Middle-Tisza River, Hungary. AGD Landscape and Environment 3(1), 1–10.

  • Kovács, S., Váriné Szöllősi, I. 2003. A Vásárhelyi Terv Továbbfejlesztését megalapozó hidrológiai és hullámtér hidraulikai vizsgálatok eredményei a Közép-Tiszán. MHT XXI. 2/12. 1–11.

  • Laes, D., Reutebuch, S., McGaughey, B., Maus, P., Mellin, T., Wilcox, C., Anhold, J., Finco, M., Brewer, K. 2008. Practical lidar acquisition considerations for forestry applications. RSAC-0111-BRIEF1. Salt Lake City, UT: U.S. Department of Agriculture, Forest Service, Remote Sensing Applications Center. 32 p.

  • Manners, R., Schmidt, J., Wheaton, M. J. 2013. Multiscalar model for the determination of spatially explicit riparian vegetation roughness. Journal of Geophysical Research: Earth Surface 118, 65–83. DOI: 10.1029/2011jf002188

  • McGaughey, R. 2018. Users Manual of Fusion/LDV: Software for LIDAR Data Analysis and Visualization. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station.

  • Naesset, E., Gobakken, T., Holmgren, J., Hyyppa, J., Maltamo, M., Nilsson, M., Olsson, H., Persson, A., Doderman, U. 2004. Laser scanning of forest resources: the Nordic experience. Scandinavian. Journal of Forest Research 19, 482–499. DOI: 10.1080/02827580410019553

  • Nagy, J., Kiss, T., Fiala, K. 2018. Hullámtér-feltöltődés vizsgálata az Alsó-Tisza mentén. II. Folyóhátak (parti hátak) feltöltődését befolyásoló tényezők. Hidrológiai Közlöny 98(1), 33–40.

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12(85), 2825–2830. DOI: 10.3389/fninf.2014.00014

  • Rátky, I., Farkas, P. 2003. A növényzet hatása a hullámtér vízszállító képességére. Vízügyi Közl. 85(2), 246–264.

  • Schaffer, C. 1993. Overfitting Avoidance as Bias. Machine Learning 10, 153–178. DOI: 10.1007/bf00993504

  • Steiger, J, Gurnell, A.M., Ergenzinger, P., Snelder, D.D. 2001. Sedimentation in the riparian zone of an incising river. Earth Surf. Process. Landforms 26, 91–108. DOI: 10.1002/1096-9837(200101)26:1<91::aidesp164>;2-u

  • Vetter, M., Höfle, B., Hollaus, M., Gschöpf, C., Mandlburger, G., Pfeifer, N. 2011. Vertical vegetation structure analysis and hydraulic roughness determination using dense ALS point cloud data–a voxel based approach. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 38(5), 200–206. DOI: 10.5194/isprsarchives-xxxviii-5-w12-265-2011

  • Zellei, L., Sziebert, J. 2003. Árvizi áramlásmérések tapasztalatai a Tiszán. In: Szlávik L. (szerk.): Elemző és módszertani tanulmányok az 1998-2001. évi ár- és belvizekről. Vízügyi Közlemények különszám 4, 133–144.


Journal + Issues