Environmental Status of a City Based on Heavy Metal Content of the Tree-Rings of Urban Trees: Case Study at Szeged, Hungary

Open access


Urban vegetation, especially urban trees could act as ecological archives, as they reflect various elements of their environment. The main aim of the study is to evaluate the spatial and temporal variations of environmental conditions in the city of Szeged (Hungary) based on long-term monitoring of the heavy metal content of tree-rings (soft wood). In general, the living conditions of the urban trees (and other organisms as well) at Szeged was the worst in 2001/05, when the heavy metal pollution was the greatest, therefore the biomass production of the sampled trees decreased. Fortunately, the environmental conditions became better, only there are some points in the industrial area, where the heavy metal pollution of the environment is gradually increases. The temporal change in lead pollution (considerable decline in 2013/17) could be explained by the obligatory usage of lead-free petrol since 1999 and the diversion of through-traffic from the town (2011). The introduction of unleaded petrol had delayed favourable results, as the dust particles containing lead probably circulated in the air for a while before they were gradually become fixed in the soil or they were washed out from the town during heavy rains. The cadmium pollution also declined after the traffic diversion, as it is connected to the usage of brake-linings. Whilst the lead and cadmium content of the tree-rings decreased during the studied decades, the trees accumulated increasing amount of zinc throughout the studied periods, as this element could be up-taken from the ground-water, as the larger the canopy of a tree the denser and deeper its root system is.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alestalo J. 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105 1–146.

  • Ballach H.J. Goevert J. Kohlmann S. Wittig R. 1998. Comparative studies on the size of annual rings leaf growth and the structure of treetops of urban trees in Frankfurt/Main. In: Breuste J. Feldmann H. Uhlmann O. (eds): Urban Ecology. Springer 699–712.

  • Brabander D.J. Keon N. Stanley R.H.R. Hemond H.F. 1999. Intra-ring variability of Cr As Cd and Pb in red oak revealed by secondary ion mass spectrometry: implications for environmental biomonitoring. PNAS 96 14635–14640. DOI: 10.1073/pnas.96.25.14635

  • Csathó P. 1994. A környezet nehézfém szennyezettsége és az agrártermelés. MTA FKI Budapest 175 p.

  • Fejes I. 2014. A talajés talajvízrendszer komplex környezeti szempontú értékelése városi területen Szeged példáján. PhD Thesis University of Szeged 142 p.

  • Fischer S. Nicholas N.S. Scheuerman P.R. 2002. Dendrochemical analysis of lead and calcium in Southern Appalachian American beech. J. Environ. Qual. 31. 1137–1145. DOI: 10.2134/jeq2002.1137

  • Gulyás Á. Kiss T. 2007. Városi élőhelyek és élőlények. In: Mezősi G. (ed): Városökológia. Földrajzi tanulmányok 1. JATEPress 119–149.

  • Grigoratos T. Martini G. 2015. Brake wear particle emissions: a review. Environ. Sci Pollut Res Int. 22 2491–2504. DOI: 10.1007/s11356-014-3696-8

  • Kadell L. Larsson J. 1978. Lead and cadmium in oak tree rings. Ambio 7 117–121.

  • Kern Z. Popa I. 2009. Assessing temperature signal in X-RAY densitometric data of norway spruce and the earliest instrumental record from the Southern Carpathians. Journal of Environmental Geography 2 (3-4) 15–22.

  • Kiss T. Sipos Gy. 2001. A morfológia és nehézfémtartalom kapcsolatának vizsgálata a Maros medrében és hullámterén. In: Ilyés Z. Keményfi R. (eds): A táj megértése felé. DE-EKF Debrecen-Eger 63–81.

  • Kiss T. Sipos Gy. 2001. A morfológia és nehézfémtartalom kapcsolatának vizsgálata a Maros medrében és hullámterén. In: Keményfi R. Ilyés Z. (eds): A táj megértése felé. DE Debrecen 63–83.

  • Ladányi Zs. Blanka V. 2015. Tree-ring width and its interrelation with environmental parameters: case study in Central-Hungary. Journal of Environmental Geography 8(3-4) 53–58. DOI: 10.1515/jengeo-2015-0012

  • Lányi G. 2000. Településkörnyezet: A természet a településben in: Enyedi Gy. (ed): Magyarország településkörnyezete. MTA Budapest 99–151.

  • Lepp N.W. 1975. The potential of tree-ring analysis for monitoring heavy metal pollution patterns. Environ. Pollut. 9 49–61. DOI: 10.1016/0013-9327(75)90055-5

  • Lin Z.Q. Barthakur N.N. Schuepp P.H. Kennedy G.G. 1995. Uptake and translocation of 54Mn and 65 Zn applied on foliage and bark surfaces of balsam fir seedlings. Env. Exp. Bot. 35 475–483.

  • Padilla K.L. Anderson K.A. 2002. Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere 49 575–585. DOI: 10.1016/s0045-6535(02)00402-2

  • Pasinszki J. 1996. Levegőhigénés mérések Szegeden az ülepedő por elemzésével 1993 nyarán. CsMTVE Évkönyve II. 62–76.

  • Temminghoff E.J. Plette A.C. van Der See S.E.A van Riemsdjik W.H. 1998. Availability and mobility of heavy metals in contaminated soils. In Filep Gy. (ed) Soil Pollution. Debrecen 85–103.

  • Waijandt J. Bancsi I. 1989. A Tisza és mellékfolyói vizének és üledékének nehézfémtartalma. Hidrológiai Közlöny 69 83–88.

  • Watmough S.A. 1999. Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environmental pollution 106 391–403. DOI: 10.1016/s0269-7491(99)00102-5

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 199 8
PDF Downloads 187 187 9