Dating the Holocene Incision of the Danube in Southern Hungary

Orsolya Tóth 1 , György Sipos 2 , Tímea Kiss 2 , and Tamás Bartyik 2
  • 1 Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem u. 2-6, H-6722 , Szeged, Hungary
  • 2 Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem u. 2-6, H-6722 , Szeged, Hungary


The alluvial development of the Great Hungarian Plain has greatly been determined by the subsidence of different areas in the Pannonian Basin. The temporal variation of subsidence rates significantly contributed to the avulsion and shifting of main rivers. This was the case in terms of the Hungarian Lower Danube when occupying its present day N-S directional course. The considerable role of tectonic forcing is also supported by the presence of different floodplain levels. Although, several channel forms are identifiable on these the timing of floodplain development has been reconstructed up till now mostly by the means of geomorphological analysis, and hardly any numerical dates were available. The main aim of this study is to provide the first OSL dates for palaeo-channels located on the high floodplain surface of the Hungarian Lower Danube, and to determine the maximum age of low and high floodplain separation on the Kalocsa Plain. For the analysis two meanders were sampled close to the edge of the step slope between the two levels. According to the results, the development of the investigated palaeo-meanders could be rapid. The formation of the older meander was dated to the Late Atlantic, while the possible separation of the high and low floodplain surfaces could start in the beginning of the Subboreal Phase.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adamiec, G., Aitken, M. 1998. Dose-rate conversion factors: update. Ancient TL 16 (2), 37-50.

  • Aitken, M. J. 1998. An Introduction to Optical Dating. Oxford University Press. London.

  • Borsy, Z. 1992. Általános természetföldrajz. Nemzeti Tankönyvkiadó, Budapest. (In Hungarian)

  • Bridge, J. S. 2003. Rivers and Floodplains. Form, Processes and Sedimentary Record. Blackwell Science LtD.

  • Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., Olley, J. M. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part I: Experimental design and statistical models. Archeometry 41, 339-364. DOI: 10.1111/j.1475-4754.1999.tb00987.

  • Gábris, Gy. 2013. A folyóvízi teraszok hazai kutatásának rövid áttekintése - A teraszok kialakulásának és korbeosztásának új magyarázata. Földrajzi Közlemények 137 (3), 240-247. (in Hungarian).

  • Gábris, Gy., Nádor, A. 2007. Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quarternaly: a review and new synthesis. Quarternaly Science Reviews 26, 2758-2782. DOI: 10.1016/j.quascirev.2007.06.030

  • Hertelendi, E., Petz, R., Scheuer, Gy., Schweitzer, F. 1991. Radiocarbon age of the formation in the Paks Szekszárd depression. - In: Pécsi, M., Schweitzer, F. (eds) Quaternary environment in Hungary: contribution of the Hungarian National Committee to the XIIIth INQUA Congress Beijing, China. Akadémiai Kiadó, Budapest, 85-89.

  • Jaskó, S., Krolopp, E. 1991. Negyedidőszaki kéregmozgások és folyóvízi üledékfelhalmozódás a Duna-völgyében Paks és Mohács között. A Földtani Intézet Évi Jelentése 1989-ről, 65-84.

  • Kiss, T., Hernesz, P., Sümeghy, B., Györgyövics, K., Sipos, Gy. 2015. The evolution of the Great Hungarian Plain fluvial system - Fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International 388 (3), 142-155. DOI: 10.1016/j.quaint.2014.05.050

  • Kiss, T., Sümeghy, B., Hernesz, P., Sipos, Gy., Mezősi, G. 2013. Az Alsó-Tisza menti ártér és a Maros hordalékkúp késő-pleisztocén és holocén fejlődéstörténete. Földrajzi Közlemények 137: (3) 269- 277. (In Hungarian)

  • Knighton, D. 1998. Fluvial forms and processes. Hodder Arnold Publication, London.

  • Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R., Zöller, L. 2002. The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Ancient TL 20, 53-61.

  • Meng, Y.M., Zhang, J.F., Qui, W.L., Fu, X., Guo, Y.J., Zhou, L.P. 2015. Optical dating of the Yellow River terraces in the Mengjin area (China). Quaternary Geochronology, 30, 219-225. DOI: 10.1016/j.quageo.2015.03.006

  • Mezősi, G., 2011. Magyarország természetföldrajza. Akadémiai kiadó, Budapest (in Hungarian)

  • Olszak, J., Kukulak, J., Alexandersonm H. 2016. Revision of river terrace geochronology in the Orawa-Nowy Targ Depression, south Poland: insights from OSL dating, Proceedings of the Geologists' Association, 127 (5), 595-605. DOI: 10.1016/j.pgeola.2016.09.004

  • Pécsi, M. 1959: A magyarországi Duna-völgy kialakulása és felszínalaktana. Akadémiai kiadó, Budapest, 345. (in Hungarian)

  • Pécsi, M. 1967. A dunai Alföld. Akadémiai kiadó, Budapest (in Hungarian)

  • Pécsi, M. 1991. A magyarországi Duna-völgy teraszai és szintjei. In: Pécsi, M., Geomorfológia és domborzatminősítés. MTA FKI, Budapest, 36-47. (in Hungarian)

  • Prescott, J. R., Hutton, J. T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and longterm time variations. Radiation Measurements 23, 497-500. DOI: 10.1016/1350-4487(94)90086-8

  • Ruszkiczay-Rüdiger, Zs., Dunai, T. J., Bada, G., Fodor, L., Horváth, E. 2005: Middle to late Pleistocene uplift rate of the Hungarian Mountain Rnage at the Danube Bend, (Pannonian Basin) using in situ produced 3He. Tectonophysics, Vol. 410, Iss. 1-4. 173-187. pp.

  • Ruszkiczay-Rüdiger, Zs., Braucher, R., Novothny, Á., Csillag, G., Fodor, L., Molnár, G., Madarász, B., ASTER Team. 2016. Tectonic and climatic control on terrace formation: Coupling in situ produced 10Be depth profiles and luminescence approach, Danube River, Hungary, Central Europe. Quaternary Science Reviews 131, 127-147. DOI: 10.1016/j.quascirev.2015.10.041

  • Somogyi, S. 1961: Hazánk folyóhálózatának fejlődéstörténeti vázlata. Földrajzi Közlemények 9 (85), 25-50. (In Hungarian)

  • Schumm, S. A. 1979: Geomorphic thresholds: The concept and its applications. Transactions of the Institute of British Geographers 4, 485-515. DOI: 10.2307/622211

  • Tóth, O., Sipos, Gy., Kiss, T., Bartyik, T.,: Variation of OSL residual doeses in terms of coarse amd fine grain modern sediments along the Hungarian section of the Danube. Geochronometria (in press)

  • Wintle, A. G., Murray, A. S. 2006. A review of quartz optically stimulated luminescence characteristic and their relevance in singlealiquot regeneration dating protocols. Radiation Measurement 41, 369-391. DOI: 10.1016/j.radmeas.2005.11.001


Journal + Issues