Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary

Open access


The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections (VO) of the Lower Tisza River for the years of 1891, 1931, 1961, 1976 and 1999. The changes in mean depth and thalweg depth were studied in detail comparing three reaches of the studied section. In general, the thalweg incised during the studied period (1891-1931: 3 cm/y; 1931-1961: 1.3 cm/y and 1976-1999: 2.3 cm/y), except from 1961-1976 which was characterized by aggradation (2 cm/y). The mean depth increased, referring to an overall deepening of the river during the whole period (1891-1931: 1.4 cm/y; 1931-1961: 1.2 cm/y; 1961-1976: 0.6 cm/y and 1976-1999: 1.6 cm/y). The thalweg shifted more in the upper reach showing less stabile channel, while the middle and lower reaches had more stable thalweg. Although the cross-sections subjected to various human interventions experienced considerable incision in the short-term, the cross-sections free from direct human impact experienced the largest incision from 1891-1999, especially along the meandering sections.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anderson R.S. Anderson S.P. 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press UK 340 p.

  • Antonelli C. Provansal M. Vella C. 2004. Recent morphological channel changes in a deltaic environment. The case of the Rhone River France. Geomorphology 57 385-402. DOI: 10.1016/s0169-555x(03)00167-3

  • Bezdan M. 2010. Characteristics of the flow regime of the regulated Tisza River reach downstream of Tiszafüred. Journal of Env. Geogr. 3 (1-4) 25 -30.

  • Bravard J.P. Landon N. Peiry J.L. Piégay H. 1999. Principles of engineering geomorphology for managing channel erosion and bedload transport examples from French rivers. Geomorphology 31 291 -311. DOI: 10.1016/s0169-555x(99)00091-4

  • Brierley G.J. Fryirs K.A. 2005. Geomorphology and River Management: Applications of the river styles framework. Blackwell Publishing UK 398 p.

  • Chang H.H. 2008. River Morphology and River Channel Changes. Transactions of Tianjin Universities 14 (4) 254-262. DOI: 10.1007/s12209-008-0045-3

  • Church M. 2006. Bed Material Transport and the Morphology of Alluvial River Channels. Annual Review of Earth and Planetary Science 34 325-354. DOI: 10.1146/annurev.earth.33.092203.122721

  • Dey S. 2014: Fluvial Hydrodynamics. GeoPlanet Series Springer-Verlag Berlin 670 p.

  • Dunka S. Fejér L. Vágás I. 1996. A verítékes honfoglalás: A Tisza szabályozás története. Vízügyi Múzeum és Levéltár Budapest 210 p. (in Hungarian)

  • Ferguson R. 2010. Time to abandon the Manning equation? Earth Surf. Proc. Landf. 38 1873-1876. DOI: 10.1002/esp.2091

  • Fryirs K.A. Brierley G.J. 2001. Variability in sediment delivery and storage along river courses in Bega catchment NSW Australia: implications for geomorphic recovery. Geomorphology 38 237-265. DOI_ 10.1016/s0169-555x(00)00093-3

  • Fryirs K.A. Brierley G.J. Preston N.J. Kasai M. 2007. Buffers barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena 70 49-67. DOI: 10.1016/j.catena. 2006.07.007

  • Fryirs K.A. Brierley G.J. Preston N.J. Spencer J. 2008. Catchmentscale (dis)connectivity in sediment flux in the upper Hunter catchment New South Wales Australia. Geomorphology 84 (3) 297-316. DOI: 10.1016/j.geomorph.2006.01.044

  • Harmar O.P. Clifford N.J. Thorne C. R. Biedenharn D. S. 2005. Morphological changes of the Lower Mississippi River: Geomorphological response to engineering intervention. River Research Applications 21 (10) 1107-1131. DOI: 10.1002/rra.887

  • Hooke J.M. 1995. River channel adjustment to meander cutoffs on River Bollin and River Dane Northwest England. Geomorphology 14 235-253. DOI: 10.1016/0169-555x(95)00110-q

  • Huang M.W. Liao J.J. Pan Y.W. Chen M.H. 2014. Rapid channelization aqnd incision into soft bedrock induced by human activity: Implication from the Bachang River in Taiwan. Engineering Geology 177 10-24. DOI: 10.1016/j.enggeo.2014.05.002

  • International Commission for Protection of the Danube River (ICPDR). 2008. Analysis of the Tisza River Catchment 2007: Initial step towards the Tisza River Catchment Management Plan-2009. Vienna Austria.

  • Kasse C. Bohnake S. J. P. Vandenberghe J. Gabris G. 2010. Fluvial style changes during the las glacial0interglacial transition in the middle Tisza Valley (Hungary). Proceedings of the Geologists Association 121 180-194. DOI: 10.1016/j.pgeola.2010.02.005

  • Kiss T. 2014. Fluviális Folyamatok antropogén hatásra megváltozó dinamikája: Egyensúly és érzékenység vizsgáta folyóvizi környezetben. Akadémiai doktori értekezés. Szeged 165 p. (In Hungarian)

  • Kiss T. Balogh M. 2015. Characteristics of point-bar development under the influence of a dam: Case study of the Dráva River at Sigetec Croatia. Journal of Env. Geogr. 8 (1-2) 23-30. DOI: 10.1515/jengeo-2015-0003

  • Kiss T. Fiala K. Sipos G. 2008. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 98 96-110. DOI: 10.1016/j.geomorph.2007.02.027

  • Kondolf G.M. Piégay H. Landon N. 2002. Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments. Geomorphology 45 35-51. DOI: 10.1016/s0169-555x(01)00188-x

  • Kroes D.E. Kraemer T.F. 2013. Human-induced stream channel abandonment Capture and filling of floodplain channels within the Atchafalaya River Basin Louisiana. Geomorphology 201 148-156. DOI: 10.1016/j.geomorph.2013.06.016

  • Laczay I.A. 1982. A folyószabályozás tervezésének morfológiai alapjai. Vízügyi Közlemények 64 (2) 235-256. (in Hungarian)

  • Landon N. Piégay H. Bravard J.P. 1998. The Drȏme River incision (France): from assessment to management. Landscape and Urban Planning 43 (1-3) 119-131. DOI: 10.1016/s0169-2046(98)00046-2

  • Lászlóffy W. 1982. A Tisza. Akadémiai Kiadó Budapest. 610 p. (in Hungarian)

  • Latapie A. Camenen B. Rodrigues S. Paquier A. Bouchard J.P. Moatar F. 2014. Assessing channel response of a long river influenced by human disturbance. Catena 121 1-12. DOI: 10.1016/j.catena.2014.04.017

  • Legleiter C.J. 2014. A geostatistical framework for quantifying the reach-scale spatial structure of river morphology: 2. Application to restored and natural channels. Geomorphology 205 85-101. DOI: 10.1016/j.geomorph.2012.01.017

  • Liébault F. Piégay H. 2001. Assessment of channel changes due to longterm bedload supply decrease Roubion River France. Geomorphology 36 167-186. DOI: 10.1016/s0169-555x(00)00044-1

  • Liébault F. Piégay H. 2002. Causes of 20th century channel narrowing in Mountain and Piedmont Rivers of southeastern France. Earth Surface Proc. and Landforms 27 425-444. DOI: 10.1002/esp.328

  • Liébault F. Gomez B. Page M. Marden M. Peacock D. Richard D. Trotter C.M. 2005. Land-use change sediment production and channel response in upland regions. River Research and Applications 21 739-756. DOI: 10.1002/rra.880

  • Lóczy D. Kis É. Schweitzer F. 2009. Local flood hazards assessed from channel morphometry along the Tisza River in Hungary. Geomorphology 113 200-209. DOI: 10.1016/j.geomorph.2009.03.013

  • Mezősi G. 2009. The Physical Geography of Hungary. Springer Switzerland 334 p.

  • Morais E.S. Rocha P.C. Hooke J. 2016. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River Brazil. Geomorphology 273 348-360. DOI: 10.1016/j.geomorph.2016.07.026

  • Nagy J. Kiss T. 2016. Hydrological and morphological changes of the Lower Danube near Mohács Hungary. Journal of Env. Geogr. 9 (1-2) 1-6.DOI: 10.1515/jengeo-2016-0001

  • Osei N.A. Harvey G.L. Gurnell A.M. 2015. The early impact of large wood introduction on the morphology and sediment characteristics of a lowland river. Limnologica 54 33-43. DOI: 10.1016/j.limno.2015.08.001

  • Pinke Z. 2014. Modernization and Decline: an eco-historical perspective on regulation of the Tisza Valley Hungary. Journal of Historical Geography 45 92-105. DOI: 10.1016/j.jhg.2014.02.001

  • Pinter A Heine RA. 2005. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis Lower Missouri River USA. Journal of Hydrology 302 70-91. DOI: 10.1016/j.jhydrol.2004.06.039

  • Powell D.M. 2014. Flow resistance in gravel-bed Rivers: Progress in research. Earth Science Reviews 136 301-338. DOI: 10.1016/j.earscirev.2014.06.001

  • Rinaldi M. 2003. Recent channel adjustments in alluvial rivers of Tuscany Central Italy. Earth Surface Processes and Landforms 28 587-608. DOI: 10.1002/esp.464

  • Rinaldi M. Simon A. 1998. Bed-level adjustments in the Arno River Central Italy. Geomorphology 22 57-71. DOI: 10.1016/s0169-555x(97)00054-8

  • Rinaldi M. Wyżga B. Surian N. 2005. Sediment mining in alluvial rivers: physical effects and management perspectives. River Research and Application 21 805-828. DOI: 10.1002/rra.884

  • Schweitzer F. 2009. Strategy or disaster: flood prevention related issues and actions in the Tisza River Catchment. Hung. Geogr. Bull. 58 3-17. DOI: 10.1007/978-94-011-4140-6_9

  • Simon A Rinaldi M. 2006. Disturbance stream incision and channel evolution. The roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology 79 (3-4) 361-383. DOI: 10.1016/j.geomorph.2006.06.037

  • Sipos G. Kiss T. Fiala K. 2007. Morphological alterations due to channelization along the lower Tisza and Maros Rivers (Hungary). Geografia Fiscia E Dinamica Quaternia 30 (2) 239-247. DOI: 10.1016/j.geomorph.2007.02.027

  • Smith L.M. Winkley B.R. 1996. The response of the Lower Mississippi River to river engineering. Engineering Geology 45 433-455. DOI: 10.1016/s0013-7952(96)00025-7

  • Surian A. 1999. Channel changes due to river regulation: the case of the Piave River Italy. Earth Surface Processes Landforms 24 1135-1151. DOI: 10.1002/(sici)1096-9837(199911)24:12<1135::aidesp40>3.3.co;2-6

  • Surian N. Rinaldi M. 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50 307-326. DOI: 10.1016/s0169-555x(02)00219-2

  • Szlávik L. 2000. Az Alföld árvízi veszélyeztetettsége. In: Pálfai J (Ed.): A víz szerepe és jelentősége. Nagyalföld Alapítvány Békéscsaba 64-84 (in Hungarian).

  • Vágás I. 1982. A Tisza árvizei. VÍZDOK Budapest 283 p. (in Hungarian)

  • Van der Berg J.H. 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12 259-279. DOI: 10.1016/01695-55x9(50)0014v-

  • Wyżga B. 2007. 20 A review on channel incision in Polish Carpathian Rivers during the 20th century. Developments in Earth Surface Processes 11 525-553.DOI: 10.1016/s0928-2025(07)11142-1

  • Xu J. 2002. River sedimentation and channel adjustment of the lower Yellow River as influenced by low discharges and seasonal channel dry-ups. Geomorphology 43 151-164. DOI: 10.1016/s0169-555x(01)00131-3

  • Yang S.L. Milliman J.D. Xu K.H. Deng B. Zhang X.Y. Luo X.X. 2014. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Science Reviews 138 469-486. DOI: 10.1016/j.earscirev.2014.07.006

  • Yates R. Waldron B. van Arsdale R. 2003. Urban effects on flood plain natural hazards: Wolf River Tennessee USA. Engineering Geology 70 1-15. DOI: 10.1016/s0013-7952(03)00088-7

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 87 8
PDF Downloads 92 60 8