An effective integration of the PM 16-QAM modulation in enhanced metropolitan networks with the EDFA amplification

Rastislav Róka 1  and Pavol Šalík 1
  • 1 Slovak University of Technology, Faculty of Electrical Engineering and Information Technology Institute of Multimedia Information and Communication Technologies, Ilkovičova 3, Bratislava, Slovakia

Abstract

This paper deals with the integration of polarization multiplexed 16-ary quadrature amplitude modulation format in optical metropolitan networks enhanced with the signal amplification. Before expensive experimental setup or practical testing and demonstration, we prefer creating of appropriate simulation platform for the optical transmission system. A novelty can be found in adjusting, optimizing and construction of the proposed optical system and functional parts for any modulation format used. So, such simulation platform is first introduced along with possibilities for numerical simulations of its optical components - laser and amplifier. By this way, essential noise tolerances for comparison with the data under real conditions are included. Subsequently, there are characterized implementations of terminal devices in detail with a possibility for upgrading to the dual-polarization mode operation. Finally, simulation results from the simulation platform are presented and a discussion about demands for effective exploitation of the polarization multiplexed 16-ary quadrature amplitude modulation in enhanced optical metropolitan networks concludes our contribution.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] “The zettabyte era:Trends and analysis”, Annual Internet Report, Ciscohttps://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html, 2017.

  • [2] E. Agrell et al, “Roadmap of optical communications”, Journal of Optics vol. 18, no. 6, 063002, May 2016, DOI: .

    • Crossref
    • Export Citation
  • [3] E. Lach and W. Idler, “Modulation formats for 100 G and beyond”, Optical Fiber Technology vol. 17, no. 5, pp. 377-386, Oct. 2011, DOI: .

    • Crossref
    • Export Citation
  • [4] A. Jain, P. Krishnamurthy, P. Landais and P. Anandarajah, “EKF for joint mitigation of phase noise, frequency offset and nonlinearity in 400 Gb/s PM-16-QAM and 200 Gb/s PM-QPSK systems”, IEEE Photonics Journal vol. 9, no. 1, 7200110, pp. 1-10, Feb. 2017, DOI: .

    • Crossref
    • Export Citation
  • [5] K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: capacity, flexibility, and network optimization”, IEEE/OSA Journal of Optical Communications and Networking vol. 9, no. 4, pp. C12-C24, Apr. 2017, DOI: .

    • Crossref
    • Export Citation
  • [6] T. Xia et al, “Transmission of 400 G PM-16 QAM channels over long-haul distance with commercial all-distributed Raman amplification system and aged standard SMF in field”, OFC 2014, San Francisco, USA, paper Tu2B. 1, Mar. 2014, DOI: .

    • Crossref
    • Export Citation
  • [7] A. J. Stark, “16 QAM for next-generation optical transport”, PhD dissertation, Georgia Institute of Technology, Atlanta, USA, May 2013.

  • [8] R. Róka and F. Čertík, “Simulation tools for broadband passive optical networks”, Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test A. Pathan, M. Monowar, S. Khan (Eds), Boca Raton, USA, CRC Press, Taylor & Francis Group, pp. 337-363, Nov. 2014, DOI: .

    • Crossref
    • Export Citation
  • [9] R. Róka and F. Čertík, “Simulation and analysis of the signal transmission in the optical transmission medium,”, SIMULTECH 2015 Colmar, France, pp. 219-226, Jul. 2015, DOI: .

    • Crossref
    • Export Citation
  • [10] P. Šalík, R. Róka, and G. Tomáš, “Simulation platform of optical transmission system in Matlab Simulink”, Procedia computer science vol. 134, pp. 196-203, Jul. 2018, DOI: .

    • Crossref
    • Export Citation
  • [11] M. Čučka, P. Šalík, R. Róka, P. Münster, and M. Filka, “Simulation models of pulse generator for OTDR in Matlab and VPI photonics”, TSP 2018 Athens, Greece. pp. 179-182, Jul. 2018, DOI: .

    • Crossref
    • Export Citation
  • [12] R. Róka, “Fixed transmission media”, in Technology and Engineering Applications of Simulink, S. Chakravarty (Ed), Rijeka, Croatia, InTech, May 2012, DOI: .

    • Crossref
    • Export Citation
  • [13] R. Róka, “The environment of fixed transmission media and their negative influences in the simulation”, Int Journal of Mathematics and Computers in Simulation, vol. 9, pp. 190-205, Sep. 2015.

  • [14] P. Šalík and R. Róka “Analysis of possibilities for numerical simulations of continuous wave DFB laser”, ICUMT 2017, Munich, Germany, pp. 215-219, Nov. 2017, DOI: .

    • Crossref
    • Export Citation
  • [15] P. Šalík and R. Róka “Analysis and simulation of dynamic properties of the DFB laser”, Przeglad elektrotechniczny, vol. 94, no. 7, pp. 17-20, Jul. 2018, DOI: .

    • Crossref
    • Export Citation
  • [16] I. Fatadin, D. Ives, and M. Wicks “Numerical simulation of intensity and phase noise from extracted parameters for CW DFB lasers”, IEEE Journal of Quantum Electronics, vol. 42, no. 9, pp. 934-941, Sep. 2006. DOI: .

    • Crossref
    • Export Citation
  • [17] M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers”, IEEE Journal of Quantum Electronics, vol. 37, no. 12, pp. 1600-1610, Dec. 2001, DOI: .

    • Crossref
    • Export Citation
  • [18] L. N. Binh, Optical fiber communication systems with MATLAB and Simulink Models, Boca Raton, USA, CRC Press, Taylor and Francis Group, 2015.

  • [19] L. N. Binh, Advanced digital optical communications, Boca Raton, USA, CRC Press, Taylor and Francis Group, 2015.

  • [20] “Laser Components InGaAs avalanche photodiode IAG series”, Data sheet, https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/lcd/iagseries_ingaas.pdf&no_cache=1, 2018.

  • [21] H. Tan, K. Inoue, T. Tanizawa, T. Kurosu, and S. Namiki, “Optical Nyquist filtering for elastic OTDM signals: Fundamentals and demonstrations”, Journal of Lightwave Technology, vol. 33, no. 5, pp. 1014-1026, Mar. 2015. DOI: .

    • Crossref
    • Export Citation
  • [22] F. Lu, B. Zhang, Y. Yue, J. Anderson, and G. -K. Chang, “Investigation of pre-equalization technique for pluggable CFP2-ACO transceivers in beyond 100 Gb/s transmissions”, Journal of Lightwave Technology, vol. 35, no. 2, pp. 230-237, Jan. 2017. DOI: .

    • Crossref
    • Export Citation
  • [23] G. Shen, Y. Zhang, X. Zhou, Y. Sheng, N. Deng, Y. Ma, and A. Lord, “Ultra-dense wavelength switched network: A special EON paradigm for metro optical networks”, IEEE Communications magazine: Optical communications, vol. 56, no. 2, pp. 189-195, Feb. 2018, DOI: .

    • Crossref
    • Export Citation
  • [24] A. Sheikh, C. Fougstedt, A. G. Amat, P. Johannisson, P. Larsson-Edefors, and M. Karlsson, “Dispersion compensation FIR filter with improved robustness to coefficient quantization errors”, IEEE Communications magazine: Optical communications,.

  • [25] C. Dorize, A. Ghazisaeidi, J. Renaudier, and G. Charlet, “Performance analysis of nonlinear and gardner timing error detectors with frequency selective pulse shaping”, ECOC 2015, Valencia, Spain, pp. 1-3, Sep. 2015, DOI: .

    • Crossref
    • Export Citation
  • [26] J. Hélio, A. Souza, J. Januário, S. Rossi, A. Chiuchiarelli, J. Reis, S. Makovejs, and D. Mello, “Single-carrier 400 G unrepeatered WDM transmission using nonlinear compensation and DD-LMS with FEC feedback”, IMOC, Aguas de Lindoia, Brazil, pp.1-5, Aug.2017, DOI: .

    • Crossref
    • Export Citation
  • [27] P. Marin-Palomo, J. N. Kemal, P. Trocha, S. Wolf, K. Merghem, F. Lelarge, A. Ramdane, W. Freude, S. Randel, and Ch. Koos, “Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode,”, Optics Express, vol. 27, no. 22, pp. 31110-31129, Oct. 2019, DOI: .

    • Crossref
    • Export Citation
OPEN ACCESS

Journal + Issues

Search