Approximate methods for the optical characterization of inhomogeneous thin films: Applications to silicon nitride films

Open access


In this paper the overview of the most important approximate methods for the optical characterization of inhomogeneous thin films is presented. The following approximate methods are introduced: Wentzel–Kramers–Brillouin–Jeffreys approximation, method based on substituting inhomogeneous thin films by multilayer systems, method based on modifying recursive approach and method utilizing multiple-beam interference model. Principles and mathematical formulations of these methods are described. A comparison of these methods is carried out from the practical point of view, ie advantages and disadvantages of individual methods are discussed. Examples of the optical characterization of three inhomogeneous thin films consisting of non-stoichiometric silicon nitride are introduced in order to illustrate efficiency and practical meaning of the presented approximate methods.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Vašíček Optics of Thin Films North–Holland Amsterdam 1960.

  • [2] Z. Knittl Optics of Thin Films Wiley London 1976.

  • [3] O. Stenzel The Physics of Thin Film Optical Spectra Surface Sciences Springer Berlin 2005.

  • [4] A. Vašíček “Polarimetric methods for the determination of the refractive index and the thickness of thin films on glass” J. Opt. Soc. Am. vol. 37 pp. 145–153 1947.

  • [5] I. Ohlídal K. Navrátil E. Schmidt “Simple method for the complete optical analysis of very thick and weakly absorbing films” Appl. Phys. A vol. 29 pp. 157–162 1982.

  • [6] T. Lohner K. J. Kumar P. Petrik A. Subrahmanyam I. Bársony “Optical analysis of room temperature magnetron sputtered ITO films by reflec tometry and spectroscopic ellipsometry” J. Mater. Res. vol. 29 pp. 1528–1536 2014.

  • [7] D. Franta I. Ohlídal D. Petrýdes “Optical Characterization of TiO2 Thin Films by the Combined Method of Spectroscopic Ellipsometry and Spectroscopic Photometry” Vacuum vol. 80 pp. 159–162 2005.

  • [8] J. C. Manifacier J. Gasiot J. P. Fillard “A simple method for the determination of the optical constants n k and the thickness of a weakly absorbing thin film” J. Phys. E: Sci. Instrum. vol. 9 pp. 1002–1004 1976.

  • [9] W. N. Hansen “Optical characterization of thin films: Theory” J. Opt. Soc. Am. vol. 63 pp. 793–802 1973.

  • [10] J. E. Nestell R. W. Christy “Derivation of optical constants of metals from thin-film measurements at oblique incidence” Appl. Opt. vol. 11 pp. 643–651 1972.

  • [11] R. M. A. Azzam M. Elshazly-Zaghloul N. M. Bashara “Combined reflection and transmission thin-film ellipsometry: a unified linear analysis” Appl. Opt. vol. 14 pp. 1652–1663 1975.

  • [12] R. Ulrich R. Torge “Measurement of thin film parameters with a prism coupler” Appl. Opt. vol. 12 pp. 2901–2908 1973.

  • [13] W. E. Case “Algebraic method for extracting thin-film optical parameters from spectrophotometer measurements” Appl. Opt. vol. 22 pp. 1832–1836 1983.

  • [14] I. Ohlídal D. Franta “Matrix Formalism for Imperfect Thin Films” Acta Phys. Slov. vol. 50 pp. 489–500 2000.

  • [15] R. Jacobsson “Matching a multilayer stack to a high-refractive index substrate by means of an inhomogeneous layer” J. Opt. Soc. Am. vol. 54 pp. 422–423 1964.

  • [16] R. Jacobsson “Light reflection from films of continuously varying refractive index” In: E. Wolf (Ed.) Progress in Optics vol. 5 Elsevier pp. 247–286 1966.

  • [17] R. Jacobsson “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications” In: G. Hass M. H. Francombe R. W. Hoffman (Eds.) Physics of Thin Films vol. 8 Academic Press New York pp. 51–98 1975.

  • [18] J. C. Charmet P. G. de Gennes “Ellipsometric formulas for an inhomogeneous layer with arbitrary refractive-index profile” J. Opt. Soc. Am. vol. 73 pp. 1777–1784 1983.

  • [19] C. K. Carniglia “Ellipsometric calculations for nonabsorbing thin films with linear refractive-index gradients” J. Opt. Soc. Am. A vol. 7 pp. 848–856 1990.

  • [20] M. Kildemo O. Hunderi B. Drévillon “Approximation of reflection coefficients for rapid real-time calculation of inhomogeneous films” J. Opt. Soc. Am. A vol. 14 pp. 931–939 1997.

  • [21] K. Vedam P. J. McMarr J. Narayan “Nondestructive depth profiling by spectroscopic ellipsometry” Appl. Phys. Lett. vol. 47 pp. 339–341 1985.

  • [22] D. Franta I. Ohlídal P. Klapetek P. Pokorný M. Ohlídal “Analysis of Inhomogeneous Thin Films of ZrO2 by the Combined Optical Method and Atomic Force Microscopy” Surf. Interface Anal. vol. 32 pp. 91–94 2001.

  • [23] D. Nečas D. Franta I. Ohlídal A. Poruba P. Wostrý “Ellipsometric characterization of inhomogeneous non-stoichiometric silicon nitride films” Surf. Interface Anal. vol. 45 pp. 1188–1192 2013.

  • [24] J. Vohánka I. Ohlídal J. Ženíšek P. Vašina M. Čermák D. Franta “Use of the Richardson extrapolation in optics of inhomogeneous layers: Application to optical characterization” Surf. Interface Anal. vol. 50 pp. 757–765 2018.

  • [25] D. Li A. Goullet M. Carette A. Granier J. P. Landesman “Effect of growth interruptions on TiO2 films deposited by plasma enhanced chemical vapour deposition” Mater. Chem. Phys. vol. 182 pp. 409–417 2016.

  • [26] B. G. Bovard “Rugate filter design: the modified Fourier transform technique” Appl. Opt. vol. 29 pp. 24–30 1990.

  • [27] G. Boivin D. St.-Germain “Synthesis of gradient-index profiles corresponding to spectral reflectance derived by inverse Fourier transform” Appl. Opt. vol. 26 pp. 4209–4213 1987.

  • [28] O. Debieu R. P. Nalini J. Cardin X. Portier J. Perriere F. Gourbilleau “Structural and optical characterization of pure Si-rich nitride thin films” Nanoscale Res. Lett. vol. 8 pp. 31 2013.

  • [29] A. Thomson N. Lal Y. Wan “Interpolating the optical properties of varied composition silicon nitride” Phys. Status Solidi B vol. 252 pp. 2230–2235 2015.

  • [30] I. Ohlídal J. Vohánka M. Čermák D. Franta “Ellipsometry of layered systems” In: O. Stenzel M. Ohlídal (Eds.) Optical Characterization of Thin Solid Films Springer International Publishing Cham pp. 233–267 2018.

  • [31] M. Kildemo “Real-time monitoring and growth control of Si-gradient index structures by multiwavelength ellipsometry” Appl. Opt. vol. 37 pp. 113–124 1998.

  • [32] M. Kildemo R. Brenot B. Drévillon “Spectroellipsometric method for process monitoring semiconductor thin films and interfaces” Appl. Opt. vol. 37 pp. 5145–5149 1998.

  • [33] I. Ohlídal J. Vohánka J. Mistrík M. Čermák F. Vižd’a D. Franta “Approximations of reflection and transmission coefficients of inhomogeneous thin films based on multiple-beam interference model” Thin Solid Films (in print).

  • [34] I. Ohlídal M. Čermák J. Vohánka “Optical characterization of thin films exhibiting defects” In: O. Stenzel M. Ohlídal (Eds.) Optical Characterization of Thin Solid Films Springer International Publishing Cham pp. 271–313 2018.

  • [35] R. M. A. Azzam N. M. Bashara Ellipsometry and Polarized Light North–Holland Amsterdam 1977.

  • [36] H. Fujiwara Spectroscopic Ellipsometry: Principles and Applications Wiley England 2007.

  • [37] I. Ohlídal D. Franta “Ellipsometry of Thin Film Systems” In: E. Wolf (Ed.) Progress in Optics vol. 41 x Amsterdam pp. 181–282 2000.

  • [38] I. Ohlídal K. Navrátil F. Lukeš “Reflection of Light on a System of Nonabsorbing Isotropic Film–Non-absorbing Isotropic Substrate with Rough Boundaries” Opt. Commun. vol. 3 pp. 40–44 1971.

  • [39] I. Ohlídal F. Lukeš “Ellipsometric parameters of randomly rough surfaces” Opt. Commun. vol. 5 pp. 323–326 1972.

  • [40] I. Ohlídal F. Lukeš K. Navrátil “Rough Silicon Surfaces Studied by Optical Methods” Surf. Sci. vol. 45 pp. 91–116 1974.

  • [41] I. Ohlídal D. Franta D. Nečas “Improved combination of scalar diffraction theory and Rayleigh-Rice theory and its application to spectroscopic ellipsometry of randomly rough surfaces” Thin Solid Films vol. 571 pp. 695–700 2014.

  • [42] C. K. Carniglia “Scalar scattering theory for multilayer optical coatings” Opt. Eng. vol. 18 pp. 104–115 1979.

  • [43] J. M. Zavislan “Angular scattering from optical interference coatings: scalar scattering predictions and measurements” Appl. Opt. vol. 30 pp. 2224–2244 1991.

  • [44] J. Bauer “Optical properties band gap and surface roughness of Si3N4Phys. Status Solidi A vol. 39 pp. 411–418 1977.

  • [45] C. L. V. James Harvey A. Krywonos “Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles” Opt. Eng. vol. 46 pp. 078002-1–10 2007.

  • [46] D. Franta D. Nečas L. Zajíčková “Models of dielectric response in disordered solids” Opt. Express vol. 15 pp. 16230–16244 2007.

  • [47] D. Franta D. Nečas I. Ohlídal “Universal dispersion model for characterization of optical thin films over wide spectral range: Application to hafnia” Appl. Opt. vol. 54 pp. 9108–9119 2015.

  • [48] D. Franta I. Ohlídal V. Buršíková L. Zajíčková “Optical properties of diamond-like carbon films containing SiOxDiam. Relat. Mat. vol. 12 pp. 1532–1538 2003.

  • [49] D. Nečas I. Ohlídal D. Franta V. Čudek M. Ohlídal J. Vodák L. Sládková L. Zajíčková M. Eliáš F. Vižd’a “Assessment of non-uniform thin films using spectroscopic ellipsometry and imaging spectroscopic reflectometry” Thin Solid Films vol. 571 pp. 573–578 2014.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 22
PDF Downloads 37 37 23