Approximate methods for the optical characterization of inhomogeneous thin films: Applications to silicon nitride films

Ivan Ohlídal 1 , Jiří Vohánka 1 , Daniel Franta 1 , Martin Čermák 1 , Jaroslav Ženíšek 1  and Petr Vašina 1
  • 1 Department of Physical Electronic, Faculty of Science, Masaryk University, 61137, Brno

Abstract

In this paper the overview of the most important approximate methods for the optical characterization of inhomogeneous thin films is presented. The following approximate methods are introduced: Wentzel–Kramers–Brillouin–Jeffreys approximation, method based on substituting inhomogeneous thin films by multilayer systems, method based on modifying recursive approach and method utilizing multiple-beam interference model. Principles and mathematical formulations of these methods are described. A comparison of these methods is carried out from the practical point of view, ie advantages and disadvantages of individual methods are discussed. Examples of the optical characterization of three inhomogeneous thin films consisting of non-stoichiometric silicon nitride are introduced in order to illustrate efficiency and practical meaning of the presented approximate methods.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Vašíček, Optics of Thin Films, North–Holland, Amsterdam, 1960.

  • [2] Z. Knittl, Optics of Thin Films, Wiley, London, 1976.

  • [3] O. Stenzel, The Physics of Thin Film Optical Spectra, Surface Sciences, Springer, Berlin, 2005.

  • [4] A. Vašíček, “Polarimetric methods for the determination of the refractive index and the thickness of thin films on glass”, J. Opt. Soc. Am., vol. 37, pp. 145–153, 1947.

  • [5] I. Ohlídal, K. Navrátil, E. Schmidt, “Simple method for the complete optical analysis of very thick and weakly absorbing films”, Appl. Phys. A, vol. 29, pp. 157–162, 1982.

  • [6] T. Lohner, K. J. Kumar, P. Petrik, A. Subrahmanyam, I. Bársony, “Optical analysis of room temperature magnetron sputtered ITO films by reflec tometry and spectroscopic ellipsometry”, J. Mater. Res., vol. 29, pp. 1528–1536, 2014.

  • [7] D. Franta, I. Ohlídal, D. Petrýdes, “Optical Characterization of TiO2 Thin Films by the Combined Method of Spectroscopic Ellipsometry and Spectroscopic Photometry”, Vacuum, vol. 80, pp. 159–162, 2005.

  • [8] J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film”, J. Phys. E: Sci. Instrum., vol. 9, pp. 1002–1004, 1976.

  • [9] W. N. Hansen, “Optical characterization of thin films: Theory”, J. Opt. Soc. Am., vol. 63, pp. 793–802, 1973.

  • [10] J. E. Nestell, R. W. Christy, “Derivation of optical constants of metals from thin-film measurements at oblique incidence”, Appl. Opt., vol. 11, pp. 643–651, 1972.

  • [11] R. M. A. Azzam, M. Elshazly-Zaghloul, N. M. Bashara, “Combined reflection and transmission thin-film ellipsometry: a unified linear analysis”, Appl. Opt., vol. 14, pp. 1652–1663, 1975.

  • [12] R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler”, Appl. Opt., vol. 12, pp. 2901–2908, 1973.

  • [13] W. E. Case, “Algebraic method for extracting thin-film optical parameters from spectrophotometer measurements”, Appl. Opt., vol. 22, pp. 1832–1836, 1983.

  • [14] I. Ohlídal, D. Franta, “Matrix Formalism for Imperfect Thin Films”, Acta Phys. Slov., vol. 50, pp. 489–500, 2000.

  • [15] R. Jacobsson, “Matching a multilayer stack to a high-refractive index substrate by means of an inhomogeneous layer”, J. Opt. Soc. Am., vol. 54, pp. 422–423, 1964.

  • [16] R. Jacobsson, “Light reflection from films of continuously varying refractive index”, In: E. Wolf (Ed.), Progress in Optics, vol. 5, Elsevier, pp. 247–286, 1966.

  • [17] R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications”, In: G. Hass, M. H. Francombe, R. W. Hoffman (Eds.), Physics of Thin Films, vol. 8, Academic Press, New York, pp. 51–98, 1975.

  • [18] J. C. Charmet, P. G. de Gennes, “Ellipsometric formulas for an inhomogeneous layer with arbitrary refractive-index profile”, J. Opt. Soc. Am., vol. 73, pp. 1777–1784, 1983.

  • [19] C. K. Carniglia, “Ellipsometric calculations for nonabsorbing thin films with linear refractive-index gradients”, J. Opt. Soc. Am. A, vol. 7, pp. 848–856, 1990.

  • [20] M. Kildemo, O. Hunderi, B. Drévillon, “Approximation of reflection coefficients for rapid real-time calculation of inhomogeneous films”, J. Opt. Soc. Am. A, vol. 14, pp. 931–939, 1997.

  • [21] K. Vedam, P. J. McMarr, J. Narayan, “Nondestructive depth profiling by spectroscopic ellipsometry”, Appl. Phys. Lett., vol. 47, pp. 339–341, 1985.

  • [22] D. Franta, I. Ohlídal, P. Klapetek, P. Pokorný, M. Ohlídal, “Analysis of Inhomogeneous Thin Films of ZrO2 by the Combined Optical Method and Atomic Force Microscopy”, Surf. Interface Anal., vol. 32, pp. 91–94, 2001.

  • [23] D. Nečas, D. Franta, I. Ohlídal, A. Poruba, P. Wostrý, “Ellipsometric characterization of inhomogeneous non-stoichiometric silicon nitride films”, Surf. Interface Anal., vol. 45, pp. 1188–1192, 2013.

  • [24] J. Vohánka, I. Ohlídal, J. Ženíšek, P. Vašina, M. Čermák, D. Franta, “Use of the Richardson extrapolation in optics of inhomogeneous layers: Application to optical characterization”, Surf. Interface Anal., vol. 50, pp. 757–765, 2018.

  • [25] D. Li, A. Goullet, M. Carette, A. Granier, J. P. Landesman, “Effect of growth interruptions on TiO2 films deposited by plasma enhanced chemical vapour deposition”, Mater. Chem. Phys., vol. 182, pp. 409–417, 2016.

  • [26] B. G. Bovard, “Rugate filter design: the modified Fourier transform technique”, Appl. Opt., vol. 29, pp. 24–30, 1990.

  • [27] G. Boivin, D. St.-Germain, “Synthesis of gradient-index profiles corresponding to spectral reflectance derived by inverse Fourier transform”, Appl. Opt., vol. 26, pp. 4209–4213, 1987.

  • [28] O. Debieu, R. P. Nalini, J. Cardin, X. Portier, J. Perriere, F. Gourbilleau, “Structural and optical characterization of pure Si-rich nitride thin films”, Nanoscale Res. Lett., vol. 8, pp. 31, 2013.

  • [29] A. Thomson, N. Lal, Y. Wan, “Interpolating the optical properties of varied composition silicon nitride”, Phys. Status Solidi B, vol. 252, pp. 2230–2235, 2015.

  • [30] I. Ohlídal, J. Vohánka, M. Čermák, D. Franta, “Ellipsometry of layered systems”, In: O. Stenzel, M. Ohlídal (Eds.), Optical Characterization of Thin Solid Films, Springer International Publishing, Cham, pp. 233–267, 2018.

  • [31] M. Kildemo, “Real-time monitoring and growth control of Si-gradient index structures by multiwavelength ellipsometry”, Appl. Opt., vol. 37, pp. 113–124, 1998.

  • [32] M. Kildemo, R. Brenot, B. Drévillon, “Spectroellipsometric method for process monitoring semiconductor thin films and interfaces”, Appl. Opt., vol. 37, pp. 5145–5149, 1998.

  • [33] I. Ohlídal, J. Vohánka, J. Mistrík, M. Čermák, F. Vižd’a, D. Franta, “Approximations of reflection and transmission coefficients of inhomogeneous thin films based on multiple-beam interference model”, Thin Solid Films, (in print).

  • [34] I. Ohlídal, M. Čermák, J. Vohánka, “Optical characterization of thin films exhibiting defects”, In: O. Stenzel, M. Ohlídal (Eds.), Optical Characterization of Thin Solid Films, Springer International Publishing, Cham, pp. 271–313, 2018.

  • [35] R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light, North–Holland, Amsterdam, 1977.

  • [36] H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Wiley, England, 2007.

  • [37] I. Ohlídal, D. Franta, “Ellipsometry of Thin Film Systems”, In: E. Wolf (Ed.), Progress in Optics, vol. 41, x, Amsterdam, pp. 181–282, 2000.

  • [38] I. Ohlídal, K. Navrátil, F. Lukeš, “Reflection of Light on a System of Nonabsorbing Isotropic Film–Non-absorbing Isotropic Substrate with Rough Boundaries”, Opt. Commun., vol. 3, pp. 40–44, 1971.

  • [39] I. Ohlídal, F. Lukeš, “Ellipsometric parameters of randomly rough surfaces”, Opt. Commun., vol. 5, pp. 323–326, 1972.

  • [40] I. Ohlídal, F. Lukeš, K. Navrátil, “Rough Silicon Surfaces Studied by Optical Methods”, Surf. Sci., vol. 45, pp. 91–116, 1974.

  • [41] I. Ohlídal, D. Franta, D. Nečas, “Improved combination of scalar diffraction theory and Rayleigh-Rice theory and its application to spectroscopic ellipsometry of randomly rough surfaces”, Thin Solid Films, vol. 571, pp. 695–700, 2014.

  • [42] C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings”, Opt. Eng., vol. 18, pp. 104–115, 1979.

  • [43] J. M. Zavislan, “Angular scattering from optical interference coatings: scalar scattering predictions and measurements”, Appl. Opt., vol. 30, pp. 2224–2244, 1991.

  • [44] J. Bauer, “Optical properties, band gap, and surface roughness of Si3N4 “, Phys. Status Solidi A, vol. 39, pp. 411–418, 1977.

  • [45] C. L. V. James Harvey, A. Krywonos, “Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles”, Opt. Eng., vol. 46, pp. 078002-1–10, 2007.

  • [46] D. Franta, D. Nečas, L. Zajíčková, “Models of dielectric response in disordered solids”, Opt. Express, vol. 15, pp. 16230–16244, 2007.

  • [47] D. Franta, D. Nečas, I. Ohlídal, “Universal dispersion model for characterization of optical thin films over wide spectral range: Application to hafnia”, Appl. Opt., vol. 54, pp. 9108–9119, 2015.

  • [48] D. Franta, I. Ohlídal, V. Buršíková, L. Zajíčková, “Optical properties of diamond-like carbon films containing SiOx “, Diam. Relat. Mat., vol. 12, pp. 1532–1538, 2003.

  • [49] D. Nečas, I. Ohlídal, D. Franta, V. Čudek, M. Ohlídal, J. Vodák, L. Sládková, L. Zajíčková, M. Eliáš, F. Vižd’a, “Assessment of non-uniform thin films using spectroscopic ellipsometry and imaging spectroscopic reflectometry”, Thin Solid Films, vol. 571, pp. 573–578, 2014.

OPEN ACCESS

Journal + Issues

Search