Open Access

Performance enhancement of split-phase induction motor by using fuzzy-based PID controller


Cite

This paper presents control and analysis of a split-phase induction motor (SPIM) to drive a centrifugal pumping system. An optimized proportional- integral and derivative (PID) controller, that is capable with a vector closed-loop split-phase induction motor control, is presented and its simulation results are discussed. The fine-tuning procedure is employed for fuzzy PID (FPID) controller parameters in order to sustain the motor speed at the predefined reference values. To assess the performance of the competitive controllers, conventional PID (CPID) and FPID, four operational indices for are suggested for measure the capability of the two controllers. These indices involve individual steady state error (ISSE) for each operating period, total steady state error (TSSE) for overall loading cycle, Individual oscillation index (IOI) and Total oscillation index (TOI), in order to measure the capability of the FPID compared with CPID. The performance of the SPIM accomplished with these performance indices is checked and tested on high and low speed levels. Pulse width modulation (PWM) based simulation studies were employed for SPIM using MATLAB/SIMULINK software. The results show that the overall performance of the SPIM operated with vector control that is tuned by FPID is enhanced compared with CPID.

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other